Tauwehe
\left(a-4\right)\left(a-1\right)
Aromātai
\left(a-4\right)\left(a-1\right)
Pātaitai
Polynomial
a ^ { 2 } - 5 a + 4
Tohaina
Kua tāruatia ki te papatopenga
p+q=-5 pq=1\times 4=4
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei a^{2}+pa+qa+4. Hei kimi p me q, whakaritea tētahi pūnaha kia whakaoti.
-1,-4 -2,-2
I te mea kua tōrunga te pq, he ōrite te tohu o p me q. I te mea kua tōraro te p+q, he tōraro hoki a p me q. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 4.
-1-4=-5 -2-2=-4
Tātaihia te tapeke mō ia takirua.
p=-4 q=-1
Ko te otinga te takirua ka hoatu i te tapeke -5.
\left(a^{2}-4a\right)+\left(-a+4\right)
Tuhia anō te a^{2}-5a+4 hei \left(a^{2}-4a\right)+\left(-a+4\right).
a\left(a-4\right)-\left(a-4\right)
Tauwehea te a i te tuatahi me te -1 i te rōpū tuarua.
\left(a-4\right)\left(a-1\right)
Whakatauwehea atu te kīanga pātahi a-4 mā te whakamahi i te āhuatanga tātai tohatoha.
a^{2}-5a+4=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
a=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 4}}{2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
a=\frac{-\left(-5\right)±\sqrt{25-4\times 4}}{2}
Pūrua -5.
a=\frac{-\left(-5\right)±\sqrt{25-16}}{2}
Whakareatia -4 ki te 4.
a=\frac{-\left(-5\right)±\sqrt{9}}{2}
Tāpiri 25 ki te -16.
a=\frac{-\left(-5\right)±3}{2}
Tuhia te pūtakerua o te 9.
a=\frac{5±3}{2}
Ko te tauaro o -5 ko 5.
a=\frac{8}{2}
Nā, me whakaoti te whārite a=\frac{5±3}{2} ina he tāpiri te ±. Tāpiri 5 ki te 3.
a=4
Whakawehe 8 ki te 2.
a=\frac{2}{2}
Nā, me whakaoti te whārite a=\frac{5±3}{2} ina he tango te ±. Tango 3 mai i 5.
a=1
Whakawehe 2 ki te 2.
a^{2}-5a+4=\left(a-4\right)\left(a-1\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 4 mō te x_{1} me te 1 mō te x_{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}