Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a^{2}-2a-2=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
a=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-2\right)}}{2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
a=\frac{-\left(-2\right)±\sqrt{4-4\left(-2\right)}}{2}
Pūrua -2.
a=\frac{-\left(-2\right)±\sqrt{4+8}}{2}
Whakareatia -4 ki te -2.
a=\frac{-\left(-2\right)±\sqrt{12}}{2}
Tāpiri 4 ki te 8.
a=\frac{-\left(-2\right)±2\sqrt{3}}{2}
Tuhia te pūtakerua o te 12.
a=\frac{2±2\sqrt{3}}{2}
Ko te tauaro o -2 ko 2.
a=\frac{2\sqrt{3}+2}{2}
Nā, me whakaoti te whārite a=\frac{2±2\sqrt{3}}{2} ina he tāpiri te ±. Tāpiri 2 ki te 2\sqrt{3}.
a=\sqrt{3}+1
Whakawehe 2+2\sqrt{3} ki te 2.
a=\frac{2-2\sqrt{3}}{2}
Nā, me whakaoti te whārite a=\frac{2±2\sqrt{3}}{2} ina he tango te ±. Tango 2\sqrt{3} mai i 2.
a=1-\sqrt{3}
Whakawehe 2-2\sqrt{3} ki te 2.
a^{2}-2a-2=\left(a-\left(\sqrt{3}+1\right)\right)\left(a-\left(1-\sqrt{3}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 1+\sqrt{3} mō te x_{1} me te 1-\sqrt{3} mō te x_{2}.