Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-a^{2}+3a^{4}-4a^{5}+6a^{5}
Pahekotia te a^{2} me -2a^{2}, ka -a^{2}.
-a^{2}+3a^{4}+2a^{5}
Pahekotia te -4a^{5} me 6a^{5}, ka 2a^{5}.
a^{2}\left(-1+3a^{2}+2a^{3}\right)
Tauwehea te a^{2}.
2a^{3}+3a^{2}-1
Whakaarohia te 1-2+3a^{2}-4a^{3}+6a^{3}. Whakarea ka paheko i ngā kīanga tau ōrite.
\left(2a-1\right)\left(a^{2}+2a+1\right)
Whakaarohia te 2a^{3}+3a^{2}-1. Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau -1, ā, ka wehea e q te whakarea arahanga 2. Ko tetahi pūtake pērā ko \frac{1}{2}. Tauwehea te pūrau mā te whakawehe mā te 2a-1.
\left(a+1\right)^{2}
Whakaarohia te a^{2}+2a+1. Whakamahia te tikanga tātai pūrua pā, p^{2}+2pq+q^{2}=\left(p+q\right)^{2}, ina p=a, ina q=1.
a^{2}\left(2a-1\right)\left(a+1\right)^{2}
Me tuhi anō te kīanga whakatauwehe katoa.