Aromātai
\left(2a-1\right)\left(a\left(a+1\right)\right)^{2}
Tauwehe
\left(2a-1\right)a^{2}\left(a+1\right)^{2}
Tohaina
Kua tāruatia ki te papatopenga
-a^{2}+3a^{4}-4a^{5}+6a^{5}
Pahekotia te a^{2} me -2a^{2}, ka -a^{2}.
-a^{2}+3a^{4}+2a^{5}
Pahekotia te -4a^{5} me 6a^{5}, ka 2a^{5}.
a^{2}\left(-1+3a^{2}+2a^{3}\right)
Tauwehea te a^{2}.
2a^{3}+3a^{2}-1
Whakaarohia te 1-2+3a^{2}-4a^{3}+6a^{3}. Whakarea ka paheko i ngā kīanga tau ōrite.
\left(2a-1\right)\left(a^{2}+2a+1\right)
Whakaarohia te 2a^{3}+3a^{2}-1. Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau -1, ā, ka wehea e q te whakarea arahanga 2. Ko tetahi pūtake pērā ko \frac{1}{2}. Tauwehea te pūrau mā te whakawehe mā te 2a-1.
\left(a+1\right)^{2}
Whakaarohia te a^{2}+2a+1. Whakamahia te tikanga tātai pūrua pā, p^{2}+2pq+q^{2}=\left(p+q\right)^{2}, ina p=a, ina q=1.
a^{2}\left(2a-1\right)\left(a+1\right)^{2}
Me tuhi anō te kīanga whakatauwehe katoa.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}