Whakaoti mō a
a=4
a=0
Tohaina
Kua tāruatia ki te papatopenga
a^{2}-4a=0
Tangohia te 4a mai i ngā taha e rua.
a\left(a-4\right)=0
Tauwehea te a.
a=0 a=4
Hei kimi otinga whārite, me whakaoti te a=0 me te a-4=0.
a^{2}-4a=0
Tangohia te 4a mai i ngā taha e rua.
a=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -4 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-4\right)±4}{2}
Tuhia te pūtakerua o te \left(-4\right)^{2}.
a=\frac{4±4}{2}
Ko te tauaro o -4 ko 4.
a=\frac{8}{2}
Nā, me whakaoti te whārite a=\frac{4±4}{2} ina he tāpiri te ±. Tāpiri 4 ki te 4.
a=4
Whakawehe 8 ki te 2.
a=\frac{0}{2}
Nā, me whakaoti te whārite a=\frac{4±4}{2} ina he tango te ±. Tango 4 mai i 4.
a=0
Whakawehe 0 ki te 2.
a=4 a=0
Kua oti te whārite te whakatau.
a^{2}-4a=0
Tangohia te 4a mai i ngā taha e rua.
a^{2}-4a+\left(-2\right)^{2}=\left(-2\right)^{2}
Whakawehea te -4, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -2. Nā, tāpiria te pūrua o te -2 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
a^{2}-4a+4=4
Pūrua -2.
\left(a-2\right)^{2}=4
Tauwehea a^{2}-4a+4. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-2\right)^{2}}=\sqrt{4}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
a-2=2 a-2=-2
Whakarūnātia.
a=4 a=0
Me tāpiri 2 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}