Tīpoka ki ngā ihirangi matua
Whakaoti mō a
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a^{2}=225-18^{2}
Tātaihia te 15 mā te pū o 2, kia riro ko 225.
a^{2}=225-324
Tātaihia te 18 mā te pū o 2, kia riro ko 324.
a^{2}=-99
Tangohia te 324 i te 225, ka -99.
a=3\sqrt{11}i a=-3\sqrt{11}i
Kua oti te whārite te whakatau.
a^{2}=225-18^{2}
Tātaihia te 15 mā te pū o 2, kia riro ko 225.
a^{2}=225-324
Tātaihia te 18 mā te pū o 2, kia riro ko 324.
a^{2}=-99
Tangohia te 324 i te 225, ka -99.
a^{2}+99=0
Me tāpiri te 99 ki ngā taha e rua.
a=\frac{0±\sqrt{0^{2}-4\times 99}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me 99 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{0±\sqrt{-4\times 99}}{2}
Pūrua 0.
a=\frac{0±\sqrt{-396}}{2}
Whakareatia -4 ki te 99.
a=\frac{0±6\sqrt{11}i}{2}
Tuhia te pūtakerua o te -396.
a=3\sqrt{11}i
Nā, me whakaoti te whārite a=\frac{0±6\sqrt{11}i}{2} ina he tāpiri te ±.
a=-3\sqrt{11}i
Nā, me whakaoti te whārite a=\frac{0±6\sqrt{11}i}{2} ina he tango te ±.
a=3\sqrt{11}i a=-3\sqrt{11}i
Kua oti te whārite te whakatau.