Whakaoti mō a
a=-3\sqrt{11}i\approx -0-9.949874371i
a=3\sqrt{11}i\approx 9.949874371i
Tohaina
Kua tāruatia ki te papatopenga
a^{2}=225-18^{2}
Tātaihia te 15 mā te pū o 2, kia riro ko 225.
a^{2}=225-324
Tātaihia te 18 mā te pū o 2, kia riro ko 324.
a^{2}=-99
Tangohia te 324 i te 225, ka -99.
a=3\sqrt{11}i a=-3\sqrt{11}i
Kua oti te whārite te whakatau.
a^{2}=225-18^{2}
Tātaihia te 15 mā te pū o 2, kia riro ko 225.
a^{2}=225-324
Tātaihia te 18 mā te pū o 2, kia riro ko 324.
a^{2}=-99
Tangohia te 324 i te 225, ka -99.
a^{2}+99=0
Me tāpiri te 99 ki ngā taha e rua.
a=\frac{0±\sqrt{0^{2}-4\times 99}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me 99 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{0±\sqrt{-4\times 99}}{2}
Pūrua 0.
a=\frac{0±\sqrt{-396}}{2}
Whakareatia -4 ki te 99.
a=\frac{0±6\sqrt{11}i}{2}
Tuhia te pūtakerua o te -396.
a=3\sqrt{11}i
Nā, me whakaoti te whārite a=\frac{0±6\sqrt{11}i}{2} ina he tāpiri te ±.
a=-3\sqrt{11}i
Nā, me whakaoti te whārite a=\frac{0±6\sqrt{11}i}{2} ina he tango te ±.
a=3\sqrt{11}i a=-3\sqrt{11}i
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}