Tīpoka ki ngā ihirangi matua
Whakaoti mō a
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a^{2}-121=0
Tangohia te 121 mai i ngā taha e rua.
\left(a-11\right)\left(a+11\right)=0
Whakaarohia te a^{2}-121. Tuhia anō te a^{2}-121 hei a^{2}-11^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
a=11 a=-11
Hei kimi otinga whārite, me whakaoti te a-11=0 me te a+11=0.
a=11 a=-11
Tuhia te pūtakerua o ngā taha e rua o te whārite.
a^{2}-121=0
Tangohia te 121 mai i ngā taha e rua.
a=\frac{0±\sqrt{0^{2}-4\left(-121\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -121 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{0±\sqrt{-4\left(-121\right)}}{2}
Pūrua 0.
a=\frac{0±\sqrt{484}}{2}
Whakareatia -4 ki te -121.
a=\frac{0±22}{2}
Tuhia te pūtakerua o te 484.
a=11
Nā, me whakaoti te whārite a=\frac{0±22}{2} ina he tāpiri te ±. Whakawehe 22 ki te 2.
a=-11
Nā, me whakaoti te whārite a=\frac{0±22}{2} ina he tango te ±. Whakawehe -22 ki te 2.
a=11 a=-11
Kua oti te whārite te whakatau.