Tīpoka ki ngā ihirangi matua
Whakaoti mō a
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a^{2}-\frac{25}{121}=0
Tangohia te \frac{25}{121} mai i ngā taha e rua.
121a^{2}-25=0
Me whakarea ngā taha e rua ki te 121.
\left(11a-5\right)\left(11a+5\right)=0
Whakaarohia te 121a^{2}-25. Tuhia anō te 121a^{2}-25 hei \left(11a\right)^{2}-5^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
a=\frac{5}{11} a=-\frac{5}{11}
Hei kimi otinga whārite, me whakaoti te 11a-5=0 me te 11a+5=0.
a=\frac{5}{11} a=-\frac{5}{11}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
a^{2}-\frac{25}{121}=0
Tangohia te \frac{25}{121} mai i ngā taha e rua.
a=\frac{0±\sqrt{0^{2}-4\left(-\frac{25}{121}\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -\frac{25}{121} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{0±\sqrt{-4\left(-\frac{25}{121}\right)}}{2}
Pūrua 0.
a=\frac{0±\sqrt{\frac{100}{121}}}{2}
Whakareatia -4 ki te -\frac{25}{121}.
a=\frac{0±\frac{10}{11}}{2}
Tuhia te pūtakerua o te \frac{100}{121}.
a=\frac{5}{11}
Nā, me whakaoti te whārite a=\frac{0±\frac{10}{11}}{2} ina he tāpiri te ±.
a=-\frac{5}{11}
Nā, me whakaoti te whārite a=\frac{0±\frac{10}{11}}{2} ina he tango te ±.
a=\frac{5}{11} a=-\frac{5}{11}
Kua oti te whārite te whakatau.