Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki a
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a^{2}-b^{2}-3a^{2}-a^{2}+b^{2}
Pahekotia te b^{2} me -2b^{2}, ka -b^{2}.
-2a^{2}-b^{2}-a^{2}+b^{2}
Pahekotia te a^{2} me -3a^{2}, ka -2a^{2}.
-3a^{2}-b^{2}+b^{2}
Pahekotia te -2a^{2} me -a^{2}, ka -3a^{2}.
-3a^{2}
Pahekotia te -b^{2} me b^{2}, ka 0.
\frac{\mathrm{d}}{\mathrm{d}a}(a^{2}-b^{2}-3a^{2}-a^{2}+b^{2})
Pahekotia te b^{2} me -2b^{2}, ka -b^{2}.
\frac{\mathrm{d}}{\mathrm{d}a}(-2a^{2}-b^{2}-a^{2}+b^{2})
Pahekotia te a^{2} me -3a^{2}, ka -2a^{2}.
\frac{\mathrm{d}}{\mathrm{d}a}(-3a^{2}-b^{2}+b^{2})
Pahekotia te -2a^{2} me -a^{2}, ka -3a^{2}.
\frac{\mathrm{d}}{\mathrm{d}a}(-3a^{2})
Pahekotia te -b^{2} me b^{2}, ka 0.
2\left(-3\right)a^{2-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
-6a^{2-1}
Whakareatia 2 ki te -3.
-6a^{1}
Tango 1 mai i 2.
-6a
Mō tētahi kupu t, t^{1}=t.