Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a\left(a+1\right)
Tauwehea te a.
a^{2}+a=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
a=\frac{-1±\sqrt{1^{2}}}{2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
a=\frac{-1±1}{2}
Tuhia te pūtakerua o te 1^{2}.
a=\frac{0}{2}
Nā, me whakaoti te whārite a=\frac{-1±1}{2} ina he tāpiri te ±. Tāpiri -1 ki te 1.
a=0
Whakawehe 0 ki te 2.
a=-\frac{2}{2}
Nā, me whakaoti te whārite a=\frac{-1±1}{2} ina he tango te ±. Tango 1 mai i -1.
a=-1
Whakawehe -2 ki te 2.
a^{2}+a=a\left(a-\left(-1\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 0 mō te x_{1} me te -1 mō te x_{2}.
a^{2}+a=a\left(a+1\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.