Whakaoti mō a
a=-15
a=7
Tohaina
Kua tāruatia ki te papatopenga
a^{2}+8a-9-96=0
Tangohia te 96 mai i ngā taha e rua.
a^{2}+8a-105=0
Tangohia te 96 i te -9, ka -105.
a+b=8 ab=-105
Hei whakaoti i te whārite, whakatauwehea te a^{2}+8a-105 mā te whakamahi i te tātai a^{2}+\left(a+b\right)a+ab=\left(a+a\right)\left(a+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,105 -3,35 -5,21 -7,15
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -105.
-1+105=104 -3+35=32 -5+21=16 -7+15=8
Tātaihia te tapeke mō ia takirua.
a=-7 b=15
Ko te otinga te takirua ka hoatu i te tapeke 8.
\left(a-7\right)\left(a+15\right)
Me tuhi anō te kīanga whakatauwehe \left(a+a\right)\left(a+b\right) mā ngā uara i tātaihia.
a=7 a=-15
Hei kimi otinga whārite, me whakaoti te a-7=0 me te a+15=0.
a^{2}+8a-9-96=0
Tangohia te 96 mai i ngā taha e rua.
a^{2}+8a-105=0
Tangohia te 96 i te -9, ka -105.
a+b=8 ab=1\left(-105\right)=-105
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei a^{2}+aa+ba-105. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,105 -3,35 -5,21 -7,15
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -105.
-1+105=104 -3+35=32 -5+21=16 -7+15=8
Tātaihia te tapeke mō ia takirua.
a=-7 b=15
Ko te otinga te takirua ka hoatu i te tapeke 8.
\left(a^{2}-7a\right)+\left(15a-105\right)
Tuhia anō te a^{2}+8a-105 hei \left(a^{2}-7a\right)+\left(15a-105\right).
a\left(a-7\right)+15\left(a-7\right)
Tauwehea te a i te tuatahi me te 15 i te rōpū tuarua.
\left(a-7\right)\left(a+15\right)
Whakatauwehea atu te kīanga pātahi a-7 mā te whakamahi i te āhuatanga tātai tohatoha.
a=7 a=-15
Hei kimi otinga whārite, me whakaoti te a-7=0 me te a+15=0.
a^{2}+8a-9=96
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
a^{2}+8a-9-96=96-96
Me tango 96 mai i ngā taha e rua o te whārite.
a^{2}+8a-9-96=0
Mā te tango i te 96 i a ia ake anō ka toe ko te 0.
a^{2}+8a-105=0
Tango 96 mai i -9.
a=\frac{-8±\sqrt{8^{2}-4\left(-105\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 8 mō b, me -105 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-8±\sqrt{64-4\left(-105\right)}}{2}
Pūrua 8.
a=\frac{-8±\sqrt{64+420}}{2}
Whakareatia -4 ki te -105.
a=\frac{-8±\sqrt{484}}{2}
Tāpiri 64 ki te 420.
a=\frac{-8±22}{2}
Tuhia te pūtakerua o te 484.
a=\frac{14}{2}
Nā, me whakaoti te whārite a=\frac{-8±22}{2} ina he tāpiri te ±. Tāpiri -8 ki te 22.
a=7
Whakawehe 14 ki te 2.
a=-\frac{30}{2}
Nā, me whakaoti te whārite a=\frac{-8±22}{2} ina he tango te ±. Tango 22 mai i -8.
a=-15
Whakawehe -30 ki te 2.
a=7 a=-15
Kua oti te whārite te whakatau.
a^{2}+8a-9=96
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
a^{2}+8a-9-\left(-9\right)=96-\left(-9\right)
Me tāpiri 9 ki ngā taha e rua o te whārite.
a^{2}+8a=96-\left(-9\right)
Mā te tango i te -9 i a ia ake anō ka toe ko te 0.
a^{2}+8a=105
Tango -9 mai i 96.
a^{2}+8a+4^{2}=105+4^{2}
Whakawehea te 8, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 4. Nā, tāpiria te pūrua o te 4 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
a^{2}+8a+16=105+16
Pūrua 4.
a^{2}+8a+16=121
Tāpiri 105 ki te 16.
\left(a+4\right)^{2}=121
Tauwehea a^{2}+8a+16. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a+4\right)^{2}}=\sqrt{121}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
a+4=11 a+4=-11
Whakarūnātia.
a=7 a=-15
Me tango 4 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}