Whakaoti mō a
a=2\sqrt{5}-4\approx 0.472135955
a=-2\sqrt{5}-4\approx -8.472135955
Tohaina
Kua tāruatia ki te papatopenga
a^{2}+8a-4=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
a=\frac{-8±\sqrt{8^{2}-4\left(-4\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 8 mō b, me -4 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-8±\sqrt{64-4\left(-4\right)}}{2}
Pūrua 8.
a=\frac{-8±\sqrt{64+16}}{2}
Whakareatia -4 ki te -4.
a=\frac{-8±\sqrt{80}}{2}
Tāpiri 64 ki te 16.
a=\frac{-8±4\sqrt{5}}{2}
Tuhia te pūtakerua o te 80.
a=\frac{4\sqrt{5}-8}{2}
Nā, me whakaoti te whārite a=\frac{-8±4\sqrt{5}}{2} ina he tāpiri te ±. Tāpiri -8 ki te 4\sqrt{5}.
a=2\sqrt{5}-4
Whakawehe -8+4\sqrt{5} ki te 2.
a=\frac{-4\sqrt{5}-8}{2}
Nā, me whakaoti te whārite a=\frac{-8±4\sqrt{5}}{2} ina he tango te ±. Tango 4\sqrt{5} mai i -8.
a=-2\sqrt{5}-4
Whakawehe -8-4\sqrt{5} ki te 2.
a=2\sqrt{5}-4 a=-2\sqrt{5}-4
Kua oti te whārite te whakatau.
a^{2}+8a-4=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
a^{2}+8a-4-\left(-4\right)=-\left(-4\right)
Me tāpiri 4 ki ngā taha e rua o te whārite.
a^{2}+8a=-\left(-4\right)
Mā te tango i te -4 i a ia ake anō ka toe ko te 0.
a^{2}+8a=4
Tango -4 mai i 0.
a^{2}+8a+4^{2}=4+4^{2}
Whakawehea te 8, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 4. Nā, tāpiria te pūrua o te 4 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
a^{2}+8a+16=4+16
Pūrua 4.
a^{2}+8a+16=20
Tāpiri 4 ki te 16.
\left(a+4\right)^{2}=20
Tauwehea a^{2}+8a+16. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a+4\right)^{2}}=\sqrt{20}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
a+4=2\sqrt{5} a+4=-2\sqrt{5}
Whakarūnātia.
a=2\sqrt{5}-4 a=-2\sqrt{5}-4
Me tango 4 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}