Whakaoti mō a (complex solution)
a=\sqrt{103}-4\approx 6.148891565
a=-\left(\sqrt{103}+4\right)\approx -14.148891565
Whakaoti mō a
a=\sqrt{103}-4\approx 6.148891565
a=-\sqrt{103}-4\approx -14.148891565
Tohaina
Kua tāruatia ki te papatopenga
a^{2}+8a+9=96
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
a^{2}+8a+9-96=96-96
Me tango 96 mai i ngā taha e rua o te whārite.
a^{2}+8a+9-96=0
Mā te tango i te 96 i a ia ake anō ka toe ko te 0.
a^{2}+8a-87=0
Tango 96 mai i 9.
a=\frac{-8±\sqrt{8^{2}-4\left(-87\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 8 mō b, me -87 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-8±\sqrt{64-4\left(-87\right)}}{2}
Pūrua 8.
a=\frac{-8±\sqrt{64+348}}{2}
Whakareatia -4 ki te -87.
a=\frac{-8±\sqrt{412}}{2}
Tāpiri 64 ki te 348.
a=\frac{-8±2\sqrt{103}}{2}
Tuhia te pūtakerua o te 412.
a=\frac{2\sqrt{103}-8}{2}
Nā, me whakaoti te whārite a=\frac{-8±2\sqrt{103}}{2} ina he tāpiri te ±. Tāpiri -8 ki te 2\sqrt{103}.
a=\sqrt{103}-4
Whakawehe -8+2\sqrt{103} ki te 2.
a=\frac{-2\sqrt{103}-8}{2}
Nā, me whakaoti te whārite a=\frac{-8±2\sqrt{103}}{2} ina he tango te ±. Tango 2\sqrt{103} mai i -8.
a=-\sqrt{103}-4
Whakawehe -8-2\sqrt{103} ki te 2.
a=\sqrt{103}-4 a=-\sqrt{103}-4
Kua oti te whārite te whakatau.
a^{2}+8a+9=96
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
a^{2}+8a+9-9=96-9
Me tango 9 mai i ngā taha e rua o te whārite.
a^{2}+8a=96-9
Mā te tango i te 9 i a ia ake anō ka toe ko te 0.
a^{2}+8a=87
Tango 9 mai i 96.
a^{2}+8a+4^{2}=87+4^{2}
Whakawehea te 8, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 4. Nā, tāpiria te pūrua o te 4 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
a^{2}+8a+16=87+16
Pūrua 4.
a^{2}+8a+16=103
Tāpiri 87 ki te 16.
\left(a+4\right)^{2}=103
Tauwehea a^{2}+8a+16. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a+4\right)^{2}}=\sqrt{103}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
a+4=\sqrt{103} a+4=-\sqrt{103}
Whakarūnātia.
a=\sqrt{103}-4 a=-\sqrt{103}-4
Me tango 4 mai i ngā taha e rua o te whārite.
a^{2}+8a+9=96
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
a^{2}+8a+9-96=96-96
Me tango 96 mai i ngā taha e rua o te whārite.
a^{2}+8a+9-96=0
Mā te tango i te 96 i a ia ake anō ka toe ko te 0.
a^{2}+8a-87=0
Tango 96 mai i 9.
a=\frac{-8±\sqrt{8^{2}-4\left(-87\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 8 mō b, me -87 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-8±\sqrt{64-4\left(-87\right)}}{2}
Pūrua 8.
a=\frac{-8±\sqrt{64+348}}{2}
Whakareatia -4 ki te -87.
a=\frac{-8±\sqrt{412}}{2}
Tāpiri 64 ki te 348.
a=\frac{-8±2\sqrt{103}}{2}
Tuhia te pūtakerua o te 412.
a=\frac{2\sqrt{103}-8}{2}
Nā, me whakaoti te whārite a=\frac{-8±2\sqrt{103}}{2} ina he tāpiri te ±. Tāpiri -8 ki te 2\sqrt{103}.
a=\sqrt{103}-4
Whakawehe -8+2\sqrt{103} ki te 2.
a=\frac{-2\sqrt{103}-8}{2}
Nā, me whakaoti te whārite a=\frac{-8±2\sqrt{103}}{2} ina he tango te ±. Tango 2\sqrt{103} mai i -8.
a=-\sqrt{103}-4
Whakawehe -8-2\sqrt{103} ki te 2.
a=\sqrt{103}-4 a=-\sqrt{103}-4
Kua oti te whārite te whakatau.
a^{2}+8a+9=96
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
a^{2}+8a+9-9=96-9
Me tango 9 mai i ngā taha e rua o te whārite.
a^{2}+8a=96-9
Mā te tango i te 9 i a ia ake anō ka toe ko te 0.
a^{2}+8a=87
Tango 9 mai i 96.
a^{2}+8a+4^{2}=87+4^{2}
Whakawehea te 8, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 4. Nā, tāpiria te pūrua o te 4 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
a^{2}+8a+16=87+16
Pūrua 4.
a^{2}+8a+16=103
Tāpiri 87 ki te 16.
\left(a+4\right)^{2}=103
Tauwehea a^{2}+8a+16. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a+4\right)^{2}}=\sqrt{103}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
a+4=\sqrt{103} a+4=-\sqrt{103}
Whakarūnātia.
a=\sqrt{103}-4 a=-\sqrt{103}-4
Me tango 4 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}