Whakaoti mō a
a=-9
a=5
Tohaina
Kua tāruatia ki te papatopenga
a+b=4 ab=-45
Hei whakaoti i te whārite, whakatauwehea te a^{2}+4a-45 mā te whakamahi i te tātai a^{2}+\left(a+b\right)a+ab=\left(a+a\right)\left(a+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,45 -3,15 -5,9
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -45.
-1+45=44 -3+15=12 -5+9=4
Tātaihia te tapeke mō ia takirua.
a=-5 b=9
Ko te otinga te takirua ka hoatu i te tapeke 4.
\left(a-5\right)\left(a+9\right)
Me tuhi anō te kīanga whakatauwehe \left(a+a\right)\left(a+b\right) mā ngā uara i tātaihia.
a=5 a=-9
Hei kimi otinga whārite, me whakaoti te a-5=0 me te a+9=0.
a+b=4 ab=1\left(-45\right)=-45
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei a^{2}+aa+ba-45. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,45 -3,15 -5,9
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -45.
-1+45=44 -3+15=12 -5+9=4
Tātaihia te tapeke mō ia takirua.
a=-5 b=9
Ko te otinga te takirua ka hoatu i te tapeke 4.
\left(a^{2}-5a\right)+\left(9a-45\right)
Tuhia anō te a^{2}+4a-45 hei \left(a^{2}-5a\right)+\left(9a-45\right).
a\left(a-5\right)+9\left(a-5\right)
Tauwehea te a i te tuatahi me te 9 i te rōpū tuarua.
\left(a-5\right)\left(a+9\right)
Whakatauwehea atu te kīanga pātahi a-5 mā te whakamahi i te āhuatanga tātai tohatoha.
a=5 a=-9
Hei kimi otinga whārite, me whakaoti te a-5=0 me te a+9=0.
a^{2}+4a-45=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
a=\frac{-4±\sqrt{4^{2}-4\left(-45\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 4 mō b, me -45 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-4±\sqrt{16-4\left(-45\right)}}{2}
Pūrua 4.
a=\frac{-4±\sqrt{16+180}}{2}
Whakareatia -4 ki te -45.
a=\frac{-4±\sqrt{196}}{2}
Tāpiri 16 ki te 180.
a=\frac{-4±14}{2}
Tuhia te pūtakerua o te 196.
a=\frac{10}{2}
Nā, me whakaoti te whārite a=\frac{-4±14}{2} ina he tāpiri te ±. Tāpiri -4 ki te 14.
a=5
Whakawehe 10 ki te 2.
a=-\frac{18}{2}
Nā, me whakaoti te whārite a=\frac{-4±14}{2} ina he tango te ±. Tango 14 mai i -4.
a=-9
Whakawehe -18 ki te 2.
a=5 a=-9
Kua oti te whārite te whakatau.
a^{2}+4a-45=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
a^{2}+4a-45-\left(-45\right)=-\left(-45\right)
Me tāpiri 45 ki ngā taha e rua o te whārite.
a^{2}+4a=-\left(-45\right)
Mā te tango i te -45 i a ia ake anō ka toe ko te 0.
a^{2}+4a=45
Tango -45 mai i 0.
a^{2}+4a+2^{2}=45+2^{2}
Whakawehea te 4, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 2. Nā, tāpiria te pūrua o te 2 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
a^{2}+4a+4=45+4
Pūrua 2.
a^{2}+4a+4=49
Tāpiri 45 ki te 4.
\left(a+2\right)^{2}=49
Tauwehea a^{2}+4a+4. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a+2\right)^{2}}=\sqrt{49}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
a+2=7 a+2=-7
Whakarūnātia.
a=5 a=-9
Me tango 2 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}