Tīpoka ki ngā ihirangi matua
Whakaoti mō a
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a^{2}+4a=0\times 0\times 1
Whakareatia te 0 ki te 0, ka 0.
a^{2}+4a=0\times 1
Whakareatia te 0 ki te 0, ka 0.
a^{2}+4a=0
Whakareatia te 0 ki te 1, ka 0.
a\left(a+4\right)=0
Tauwehea te a.
a=0 a=-4
Hei kimi otinga whārite, me whakaoti te a=0 me te a+4=0.
a^{2}+4a=0\times 0\times 1
Whakareatia te 0 ki te 0, ka 0.
a^{2}+4a=0\times 1
Whakareatia te 0 ki te 0, ka 0.
a^{2}+4a=0
Whakareatia te 0 ki te 1, ka 0.
a=\frac{-4±\sqrt{4^{2}}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 4 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-4±4}{2}
Tuhia te pūtakerua o te 4^{2}.
a=\frac{0}{2}
Nā, me whakaoti te whārite a=\frac{-4±4}{2} ina he tāpiri te ±. Tāpiri -4 ki te 4.
a=0
Whakawehe 0 ki te 2.
a=-\frac{8}{2}
Nā, me whakaoti te whārite a=\frac{-4±4}{2} ina he tango te ±. Tango 4 mai i -4.
a=-4
Whakawehe -8 ki te 2.
a=0 a=-4
Kua oti te whārite te whakatau.
a^{2}+4a=0\times 0\times 1
Whakareatia te 0 ki te 0, ka 0.
a^{2}+4a=0\times 1
Whakareatia te 0 ki te 0, ka 0.
a^{2}+4a=0
Whakareatia te 0 ki te 1, ka 0.
a^{2}+4a+2^{2}=2^{2}
Whakawehea te 4, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 2. Nā, tāpiria te pūrua o te 2 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
a^{2}+4a+4=4
Pūrua 2.
\left(a+2\right)^{2}=4
Tauwehea a^{2}+4a+4. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a+2\right)^{2}}=\sqrt{4}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
a+2=2 a+2=-2
Whakarūnātia.
a=0 a=-4
Me tango 2 mai i ngā taha e rua o te whārite.