Tīpoka ki ngā ihirangi matua
Whakaoti mō a
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a^{2}+16=8^{2}
Tātaihia te 4 mā te pū o 2, kia riro ko 16.
a^{2}+16=64
Tātaihia te 8 mā te pū o 2, kia riro ko 64.
a^{2}=64-16
Tangohia te 16 mai i ngā taha e rua.
a^{2}=48
Tangohia te 16 i te 64, ka 48.
a=4\sqrt{3} a=-4\sqrt{3}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
a^{2}+16=8^{2}
Tātaihia te 4 mā te pū o 2, kia riro ko 16.
a^{2}+16=64
Tātaihia te 8 mā te pū o 2, kia riro ko 64.
a^{2}+16-64=0
Tangohia te 64 mai i ngā taha e rua.
a^{2}-48=0
Tangohia te 64 i te 16, ka -48.
a=\frac{0±\sqrt{0^{2}-4\left(-48\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -48 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{0±\sqrt{-4\left(-48\right)}}{2}
Pūrua 0.
a=\frac{0±\sqrt{192}}{2}
Whakareatia -4 ki te -48.
a=\frac{0±8\sqrt{3}}{2}
Tuhia te pūtakerua o te 192.
a=4\sqrt{3}
Nā, me whakaoti te whārite a=\frac{0±8\sqrt{3}}{2} ina he tāpiri te ±.
a=-4\sqrt{3}
Nā, me whakaoti te whārite a=\frac{0±8\sqrt{3}}{2} ina he tango te ±.
a=4\sqrt{3} a=-4\sqrt{3}
Kua oti te whārite te whakatau.