Whakaoti mō a
a=-\sqrt{843}\approx -29.034462282
a=\sqrt{843}\approx 29.034462282
Tohaina
Kua tāruatia ki te papatopenga
a^{2}+2\left(-1\right)=29^{2}
Tātaihia te i mā te pū o 2, kia riro ko -1.
a^{2}-2=29^{2}
Whakareatia te 2 ki te -1, ka -2.
a^{2}-2=841
Tātaihia te 29 mā te pū o 2, kia riro ko 841.
a^{2}=841+2
Me tāpiri te 2 ki ngā taha e rua.
a^{2}=843
Tāpirihia te 841 ki te 2, ka 843.
a=\sqrt{843} a=-\sqrt{843}
Kua oti te whārite te whakatau.
a^{2}+2\left(-1\right)=29^{2}
Tātaihia te i mā te pū o 2, kia riro ko -1.
a^{2}-2=29^{2}
Whakareatia te 2 ki te -1, ka -2.
a^{2}-2=841
Tātaihia te 29 mā te pū o 2, kia riro ko 841.
a^{2}-2-841=0
Tangohia te 841 mai i ngā taha e rua.
a^{2}-843=0
Tangohia te 841 i te -2, ka -843.
a=\frac{0±\sqrt{0^{2}-4\left(-843\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -843 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{0±\sqrt{-4\left(-843\right)}}{2}
Pūrua 0.
a=\frac{0±\sqrt{3372}}{2}
Whakareatia -4 ki te -843.
a=\frac{0±2\sqrt{843}}{2}
Tuhia te pūtakerua o te 3372.
a=\sqrt{843}
Nā, me whakaoti te whārite a=\frac{0±2\sqrt{843}}{2} ina he tāpiri te ±.
a=-\sqrt{843}
Nā, me whakaoti te whārite a=\frac{0±2\sqrt{843}}{2} ina he tango te ±.
a=\sqrt{843} a=-\sqrt{843}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}