Tīpoka ki ngā ihirangi matua
Whakaoti mō a
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a^{2}+2\left(-1\right)=29^{2}
Tātaihia te i mā te pū o 2, kia riro ko -1.
a^{2}-2=29^{2}
Whakareatia te 2 ki te -1, ka -2.
a^{2}-2=841
Tātaihia te 29 mā te pū o 2, kia riro ko 841.
a^{2}=841+2
Me tāpiri te 2 ki ngā taha e rua.
a^{2}=843
Tāpirihia te 841 ki te 2, ka 843.
a=\sqrt{843} a=-\sqrt{843}
Kua oti te whārite te whakatau.
a^{2}+2\left(-1\right)=29^{2}
Tātaihia te i mā te pū o 2, kia riro ko -1.
a^{2}-2=29^{2}
Whakareatia te 2 ki te -1, ka -2.
a^{2}-2=841
Tātaihia te 29 mā te pū o 2, kia riro ko 841.
a^{2}-2-841=0
Tangohia te 841 mai i ngā taha e rua.
a^{2}-843=0
Tangohia te 841 i te -2, ka -843.
a=\frac{0±\sqrt{0^{2}-4\left(-843\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -843 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{0±\sqrt{-4\left(-843\right)}}{2}
Pūrua 0.
a=\frac{0±\sqrt{3372}}{2}
Whakareatia -4 ki te -843.
a=\frac{0±2\sqrt{843}}{2}
Tuhia te pūtakerua o te 3372.
a=\sqrt{843}
Nā, me whakaoti te whārite a=\frac{0±2\sqrt{843}}{2} ina he tāpiri te ±.
a=-\sqrt{843}
Nā, me whakaoti te whārite a=\frac{0±2\sqrt{843}}{2} ina he tango te ±.
a=\sqrt{843} a=-\sqrt{843}
Kua oti te whārite te whakatau.