Tauwehe
\left(a-20\right)\left(a+30\right)
Aromātai
\left(a-20\right)\left(a+30\right)
Tohaina
Kua tāruatia ki te papatopenga
p+q=10 pq=1\left(-600\right)=-600
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei a^{2}+pa+qa-600. Hei kimi p me q, whakaritea tētahi pūnaha kia whakaoti.
-1,600 -2,300 -3,200 -4,150 -5,120 -6,100 -8,75 -10,60 -12,50 -15,40 -20,30 -24,25
I te mea kua tōraro te pq, he tauaro ngā tohu o p me q. I te mea kua tōrunga te p+q, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -600.
-1+600=599 -2+300=298 -3+200=197 -4+150=146 -5+120=115 -6+100=94 -8+75=67 -10+60=50 -12+50=38 -15+40=25 -20+30=10 -24+25=1
Tātaihia te tapeke mō ia takirua.
p=-20 q=30
Ko te otinga te takirua ka hoatu i te tapeke 10.
\left(a^{2}-20a\right)+\left(30a-600\right)
Tuhia anō te a^{2}+10a-600 hei \left(a^{2}-20a\right)+\left(30a-600\right).
a\left(a-20\right)+30\left(a-20\right)
Tauwehea te a i te tuatahi me te 30 i te rōpū tuarua.
\left(a-20\right)\left(a+30\right)
Whakatauwehea atu te kīanga pātahi a-20 mā te whakamahi i te āhuatanga tātai tohatoha.
a^{2}+10a-600=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
a=\frac{-10±\sqrt{10^{2}-4\left(-600\right)}}{2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
a=\frac{-10±\sqrt{100-4\left(-600\right)}}{2}
Pūrua 10.
a=\frac{-10±\sqrt{100+2400}}{2}
Whakareatia -4 ki te -600.
a=\frac{-10±\sqrt{2500}}{2}
Tāpiri 100 ki te 2400.
a=\frac{-10±50}{2}
Tuhia te pūtakerua o te 2500.
a=\frac{40}{2}
Nā, me whakaoti te whārite a=\frac{-10±50}{2} ina he tāpiri te ±. Tāpiri -10 ki te 50.
a=20
Whakawehe 40 ki te 2.
a=-\frac{60}{2}
Nā, me whakaoti te whārite a=\frac{-10±50}{2} ina he tango te ±. Tango 50 mai i -10.
a=-30
Whakawehe -60 ki te 2.
a^{2}+10a-600=\left(a-20\right)\left(a-\left(-30\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 20 mō te x_{1} me te -30 mō te x_{2}.
a^{2}+10a-600=\left(a-20\right)\left(a+30\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}