Whakaoti mō a
a=\frac{\sqrt[10]{e}}{500}\approx 0.002210342
Tohaina
Kua tāruatia ki te papatopenga
2\times \frac{1}{a}=1000e^{-\int _{0}^{2}0.02r+0.03\mathrm{d}r}
Whakaraupapatia anō ngā kīanga tau.
2\times 1=1000e^{-\int _{0}^{2}0.02r+0.03\mathrm{d}r}a
Tē taea kia ōrite te tāupe a ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te a.
2=1000e^{-\int _{0}^{2}0.02r+0.03\mathrm{d}r}a
Whakareatia te 2 ki te 1, ka 2.
1000e^{-\int _{0}^{2}0.02r+0.03\mathrm{d}r}a=2
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\frac{1000}{\sqrt[10]{e}}a=2
He hanga arowhānui tō te whārite.
\frac{\frac{1000}{\sqrt[10]{e}}a\sqrt[10]{e}}{1000}=\frac{2\sqrt[10]{e}}{1000}
Whakawehea ngā taha e rua ki te 1000e^{-\frac{1}{10}}.
a=\frac{2\sqrt[10]{e}}{1000}
Mā te whakawehe ki te 1000e^{-\frac{1}{10}} ka wetekia te whakareanga ki te 1000e^{-\frac{1}{10}}.
a=\frac{\sqrt[10]{e}}{500}
Whakawehe 2 ki te 1000e^{-\frac{1}{10}}.
a=\frac{\sqrt[10]{e}}{500}\text{, }a\neq 0
Tē taea kia ōrite te tāupe a ki 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}