Whakaoti mō a
a=-\frac{b-25}{b+1}
b\neq -1
Whakaoti mō b
b=-\frac{a-25}{a+1}
a\neq -1
Pātaitai
Linear Equation
a + b + a b = 25
Tohaina
Kua tāruatia ki te papatopenga
a+ab=25-b
Tangohia te b mai i ngā taha e rua.
\left(1+b\right)a=25-b
Pahekotia ngā kīanga tau katoa e whai ana i te a.
\left(b+1\right)a=25-b
He hanga arowhānui tō te whārite.
\frac{\left(b+1\right)a}{b+1}=\frac{25-b}{b+1}
Whakawehea ngā taha e rua ki te 1+b.
a=\frac{25-b}{b+1}
Mā te whakawehe ki te 1+b ka wetekia te whakareanga ki te 1+b.
b+ab=25-a
Tangohia te a mai i ngā taha e rua.
\left(1+a\right)b=25-a
Pahekotia ngā kīanga tau katoa e whai ana i te b.
\left(a+1\right)b=25-a
He hanga arowhānui tō te whārite.
\frac{\left(a+1\right)b}{a+1}=\frac{25-a}{a+1}
Whakawehea ngā taha e rua ki te 1+a.
b=\frac{25-a}{a+1}
Mā te whakawehe ki te 1+a ka wetekia te whakareanga ki te 1+a.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}