Whakaoti mō Y (complex solution)
Y=\ln(x^{3})+2\ln(3)
x\neq 0
Whakaoti mō x (complex solution)
x=\frac{\sqrt[3]{3}ie^{\frac{Y}{3}+\frac{\pi i}{6}}}{3}
x=\frac{\sqrt[3]{3}e^{\frac{Y}{3}}}{3}
x=-\frac{\sqrt[3]{3}e^{\frac{Y+\pi i}{3}}}{3}\text{, }Im(\ln(e^{Y}))-Im(Y)=0
Whakaoti mō Y
Y=3\ln(x)+2\ln(3)
x>0
Whakaoti mō x
x=\frac{\sqrt[3]{3}e^{\frac{Y}{3}}}{3}
Graph
Tohaina
Kua tāruatia ki te papatopenga
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}