Tīpoka ki ngā ihirangi matua
Whakaoti mō X
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(X-3\right)\left(X+3\right)=0
Whakaarohia te X^{2}-9. Tuhia anō te X^{2}-9 hei X^{2}-3^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
X=3 X=-3
Hei kimi otinga whārite, me whakaoti te X-3=0 me te X+3=0.
X^{2}=9
Me tāpiri te 9 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
X=3 X=-3
Tuhia te pūtakerua o ngā taha e rua o te whārite.
X^{2}-9=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
X=\frac{0±\sqrt{0^{2}-4\left(-9\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -9 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
X=\frac{0±\sqrt{-4\left(-9\right)}}{2}
Pūrua 0.
X=\frac{0±\sqrt{36}}{2}
Whakareatia -4 ki te -9.
X=\frac{0±6}{2}
Tuhia te pūtakerua o te 36.
X=3
Nā, me whakaoti te whārite X=\frac{0±6}{2} ina he tāpiri te ±. Whakawehe 6 ki te 2.
X=-3
Nā, me whakaoti te whārite X=\frac{0±6}{2} ina he tango te ±. Whakawehe -6 ki te 2.
X=3 X=-3
Kua oti te whārite te whakatau.