Whakaoti mō C (complex solution)
\left\{\begin{matrix}C=\frac{W}{rt+1}\text{, }&t=0\text{ or }r\neq -\frac{1}{t}\\C\in \mathrm{C}\text{, }&W=0\text{ and }r=-\frac{1}{t}\text{ and }t\neq 0\end{matrix}\right.
Whakaoti mō C
\left\{\begin{matrix}C=\frac{W}{rt+1}\text{, }&t=0\text{ or }r\neq -\frac{1}{t}\\C\in \mathrm{R}\text{, }&W=0\text{ and }r=-\frac{1}{t}\text{ and }t\neq 0\end{matrix}\right.
Whakaoti mō W
W=C\left(rt+1\right)
Tohaina
Kua tāruatia ki te papatopenga
C+Crt=W
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\left(1+rt\right)C=W
Pahekotia ngā kīanga tau katoa e whai ana i te C.
\left(rt+1\right)C=W
He hanga arowhānui tō te whārite.
\frac{\left(rt+1\right)C}{rt+1}=\frac{W}{rt+1}
Whakawehea ngā taha e rua ki te 1+rt.
C=\frac{W}{rt+1}
Mā te whakawehe ki te 1+rt ka wetekia te whakareanga ki te 1+rt.
C+Crt=W
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\left(1+rt\right)C=W
Pahekotia ngā kīanga tau katoa e whai ana i te C.
\left(rt+1\right)C=W
He hanga arowhānui tō te whārite.
\frac{\left(rt+1\right)C}{rt+1}=\frac{W}{rt+1}
Whakawehea ngā taha e rua ki te 1+rt.
C=\frac{W}{rt+1}
Mā te whakawehe ki te 1+rt ka wetekia te whakareanga ki te 1+rt.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}