Whakaoti mō t
t=-\frac{2W}{5}+94
Whakaoti mō W
W=-\frac{5t}{2}+235
Tohaina
Kua tāruatia ki te papatopenga
235-2.5t=W
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-2.5t=W-235
Tangohia te 235 mai i ngā taha e rua.
\frac{-2.5t}{-2.5}=\frac{W-235}{-2.5}
Whakawehea ngā taha e rua o te whārite ki te -2.5, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
t=\frac{W-235}{-2.5}
Mā te whakawehe ki te -2.5 ka wetekia te whakareanga ki te -2.5.
t=-\frac{2W}{5}+94
Whakawehe W-235 ki te -2.5 mā te whakarea W-235 ki te tau huripoki o -2.5.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}