Whakaoti mō m (complex solution)
\left\{\begin{matrix}m=-\frac{1200-W-15x}{x-40}\text{, }&x\neq 40\\m\in \mathrm{C}\text{, }&W=600\text{ and }x=40\end{matrix}\right.
Whakaoti mō W
W=mx-15x-40m+1200
Whakaoti mō m
\left\{\begin{matrix}m=-\frac{1200-W-15x}{x-40}\text{, }&x\neq 40\\m\in \mathrm{R}\text{, }&W=600\text{ and }x=40\end{matrix}\right.
Graph
Tohaina
Kua tāruatia ki te papatopenga
W=15x+1200-30x-40m+xm
Whakamahia te āhuatanga tohatoha hei whakarea te 30-m ki te 40-x.
W=-15x+1200-40m+xm
Pahekotia te 15x me -30x, ka -15x.
-15x+1200-40m+xm=W
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
1200-40m+xm=W+15x
Me tāpiri te 15x ki ngā taha e rua.
-40m+xm=W+15x-1200
Tangohia te 1200 mai i ngā taha e rua.
\left(-40+x\right)m=W+15x-1200
Pahekotia ngā kīanga tau katoa e whai ana i te m.
\left(x-40\right)m=15x+W-1200
He hanga arowhānui tō te whārite.
\frac{\left(x-40\right)m}{x-40}=\frac{15x+W-1200}{x-40}
Whakawehea ngā taha e rua ki te x-40.
m=\frac{15x+W-1200}{x-40}
Mā te whakawehe ki te x-40 ka wetekia te whakareanga ki te x-40.
W=15x+1200-30x-40m+mx
Whakamahia te āhuatanga tohatoha hei whakarea te 30-m ki te 40-x.
W=-15x+1200-40m+mx
Pahekotia te 15x me -30x, ka -15x.
W=15x+1200-30x-40m+xm
Whakamahia te āhuatanga tohatoha hei whakarea te 30-m ki te 40-x.
W=-15x+1200-40m+xm
Pahekotia te 15x me -30x, ka -15x.
-15x+1200-40m+xm=W
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
1200-40m+xm=W+15x
Me tāpiri te 15x ki ngā taha e rua.
-40m+xm=W+15x-1200
Tangohia te 1200 mai i ngā taha e rua.
\left(-40+x\right)m=W+15x-1200
Pahekotia ngā kīanga tau katoa e whai ana i te m.
\left(x-40\right)m=15x+W-1200
He hanga arowhānui tō te whārite.
\frac{\left(x-40\right)m}{x-40}=\frac{15x+W-1200}{x-40}
Whakawehea ngā taha e rua ki te x-40.
m=\frac{15x+W-1200}{x-40}
Mā te whakawehe ki te x-40 ka wetekia te whakareanga ki te x-40.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}