Whakaoti mō W
W=\frac{4m}{5}-\frac{6n}{5}+150
Whakaoti mō m
m=\frac{3n}{2}+\frac{5W}{4}-187.5
Tohaina
Kua tāruatia ki te papatopenga
W=0.8m+\left(\frac{100}{0.8}+\frac{-0.8n}{0.8}\right)\times 1.2
Whakawehea ia wā o 100-0.8n ki te 0.8, kia riro ko \frac{100}{0.8}+\frac{-0.8n}{0.8}.
W=0.8m+\left(\frac{1000}{8}+\frac{-0.8n}{0.8}\right)\times 1.2
Whakarohaina te \frac{100}{0.8} mā te whakarea i te taurunga me te tauraro ki te 10.
W=0.8m+\left(125+\frac{-0.8n}{0.8}\right)\times 1.2
Whakawehea te 1000 ki te 8, kia riro ko 125.
W=0.8m+\left(125-n\right)\times 1.2
Me whakakore te 0.8 me te 0.8.
W=0.8m+150-1.2n
Whakamahia te āhuatanga tohatoha hei whakarea te 125-n ki te 1.2.
W=0.8m+\left(\frac{100}{0.8}+\frac{-0.8n}{0.8}\right)\times 1.2
Whakawehea ia wā o 100-0.8n ki te 0.8, kia riro ko \frac{100}{0.8}+\frac{-0.8n}{0.8}.
W=0.8m+\left(\frac{1000}{8}+\frac{-0.8n}{0.8}\right)\times 1.2
Whakarohaina te \frac{100}{0.8} mā te whakarea i te taurunga me te tauraro ki te 10.
W=0.8m+\left(125+\frac{-0.8n}{0.8}\right)\times 1.2
Whakawehea te 1000 ki te 8, kia riro ko 125.
W=0.8m+\left(125-n\right)\times 1.2
Me whakakore te 0.8 me te 0.8.
W=0.8m+150-1.2n
Whakamahia te āhuatanga tohatoha hei whakarea te 125-n ki te 1.2.
0.8m+150-1.2n=W
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
0.8m-1.2n=W-150
Tangohia te 150 mai i ngā taha e rua.
0.8m=W-150+1.2n
Me tāpiri te 1.2n ki ngā taha e rua.
0.8m=\frac{6n}{5}+W-150
He hanga arowhānui tō te whārite.
\frac{0.8m}{0.8}=\frac{\frac{6n}{5}+W-150}{0.8}
Whakawehea ngā taha e rua o te whārite ki te 0.8, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
m=\frac{\frac{6n}{5}+W-150}{0.8}
Mā te whakawehe ki te 0.8 ka wetekia te whakareanga ki te 0.8.
m=\frac{3n}{2}+\frac{5W}{4}-\frac{375}{2}
Whakawehe -150+W+\frac{6n}{5} ki te 0.8 mā te whakarea -150+W+\frac{6n}{5} ki te tau huripoki o 0.8.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}