Whakaoti mō V
V=\frac{25\sqrt{6}}{3}+50\approx 70.412414523
V=-\frac{25\sqrt{6}}{3}+50\approx 29.587585477
Tohaina
Kua tāruatia ki te papatopenga
V^{2}=625+\left(75-2V\right)^{2}
Tātaihia te 25 mā te pū o 2, kia riro ko 625.
V^{2}=625+5625-300V+4V^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(75-2V\right)^{2}.
V^{2}=6250-300V+4V^{2}
Tāpirihia te 625 ki te 5625, ka 6250.
V^{2}-6250=-300V+4V^{2}
Tangohia te 6250 mai i ngā taha e rua.
V^{2}-6250+300V=4V^{2}
Me tāpiri te 300V ki ngā taha e rua.
V^{2}-6250+300V-4V^{2}=0
Tangohia te 4V^{2} mai i ngā taha e rua.
-3V^{2}-6250+300V=0
Pahekotia te V^{2} me -4V^{2}, ka -3V^{2}.
-3V^{2}+300V-6250=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
V=\frac{-300±\sqrt{300^{2}-4\left(-3\right)\left(-6250\right)}}{2\left(-3\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -3 mō a, 300 mō b, me -6250 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
V=\frac{-300±\sqrt{90000-4\left(-3\right)\left(-6250\right)}}{2\left(-3\right)}
Pūrua 300.
V=\frac{-300±\sqrt{90000+12\left(-6250\right)}}{2\left(-3\right)}
Whakareatia -4 ki te -3.
V=\frac{-300±\sqrt{90000-75000}}{2\left(-3\right)}
Whakareatia 12 ki te -6250.
V=\frac{-300±\sqrt{15000}}{2\left(-3\right)}
Tāpiri 90000 ki te -75000.
V=\frac{-300±50\sqrt{6}}{2\left(-3\right)}
Tuhia te pūtakerua o te 15000.
V=\frac{-300±50\sqrt{6}}{-6}
Whakareatia 2 ki te -3.
V=\frac{50\sqrt{6}-300}{-6}
Nā, me whakaoti te whārite V=\frac{-300±50\sqrt{6}}{-6} ina he tāpiri te ±. Tāpiri -300 ki te 50\sqrt{6}.
V=-\frac{25\sqrt{6}}{3}+50
Whakawehe -300+50\sqrt{6} ki te -6.
V=\frac{-50\sqrt{6}-300}{-6}
Nā, me whakaoti te whārite V=\frac{-300±50\sqrt{6}}{-6} ina he tango te ±. Tango 50\sqrt{6} mai i -300.
V=\frac{25\sqrt{6}}{3}+50
Whakawehe -300-50\sqrt{6} ki te -6.
V=-\frac{25\sqrt{6}}{3}+50 V=\frac{25\sqrt{6}}{3}+50
Kua oti te whārite te whakatau.
V^{2}=625+\left(75-2V\right)^{2}
Tātaihia te 25 mā te pū o 2, kia riro ko 625.
V^{2}=625+5625-300V+4V^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(75-2V\right)^{2}.
V^{2}=6250-300V+4V^{2}
Tāpirihia te 625 ki te 5625, ka 6250.
V^{2}+300V=6250+4V^{2}
Me tāpiri te 300V ki ngā taha e rua.
V^{2}+300V-4V^{2}=6250
Tangohia te 4V^{2} mai i ngā taha e rua.
-3V^{2}+300V=6250
Pahekotia te V^{2} me -4V^{2}, ka -3V^{2}.
\frac{-3V^{2}+300V}{-3}=\frac{6250}{-3}
Whakawehea ngā taha e rua ki te -3.
V^{2}+\frac{300}{-3}V=\frac{6250}{-3}
Mā te whakawehe ki te -3 ka wetekia te whakareanga ki te -3.
V^{2}-100V=\frac{6250}{-3}
Whakawehe 300 ki te -3.
V^{2}-100V=-\frac{6250}{3}
Whakawehe 6250 ki te -3.
V^{2}-100V+\left(-50\right)^{2}=-\frac{6250}{3}+\left(-50\right)^{2}
Whakawehea te -100, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -50. Nā, tāpiria te pūrua o te -50 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
V^{2}-100V+2500=-\frac{6250}{3}+2500
Pūrua -50.
V^{2}-100V+2500=\frac{1250}{3}
Tāpiri -\frac{6250}{3} ki te 2500.
\left(V-50\right)^{2}=\frac{1250}{3}
Tauwehea V^{2}-100V+2500. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(V-50\right)^{2}}=\sqrt{\frac{1250}{3}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
V-50=\frac{25\sqrt{6}}{3} V-50=-\frac{25\sqrt{6}}{3}
Whakarūnātia.
V=\frac{25\sqrt{6}}{3}+50 V=-\frac{25\sqrt{6}}{3}+50
Me tāpiri 50 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}