Whakaoti mō t
t=-\frac{5V}{27}+274680344503845
Whakaoti mō V
V=-\frac{27t}{5}+1483273860320763
Tohaina
Kua tāruatia ki te papatopenga
V=-5.4t+1483273860320763
Tātaihia te 147 mā te pū o 7, kia riro ko 1483273860320763.
-5.4t+1483273860320763=V
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-5.4t=V-1483273860320763
Tangohia te 1483273860320763 mai i ngā taha e rua.
\frac{-5.4t}{-5.4}=\frac{V-1483273860320763}{-5.4}
Whakawehea ngā taha e rua o te whārite ki te -5.4, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
t=\frac{V-1483273860320763}{-5.4}
Mā te whakawehe ki te -5.4 ka wetekia te whakareanga ki te -5.4.
t=-\frac{5V}{27}+274680344503845
Whakawehe V-1483273860320763 ki te -5.4 mā te whakarea V-1483273860320763 ki te tau huripoki o -5.4.
V=-5.4t+1483273860320763
Tātaihia te 147 mā te pū o 7, kia riro ko 1483273860320763.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}