Whakaoti mō h
h=\frac{V}{\pi r^{2}}-\frac{2}{3r^{3}}
r\neq 0
Whakaoti mō V
V=\pi hr^{2}+\frac{2\pi }{3r}
r\neq 0
Tohaina
Kua tāruatia ki te papatopenga
V\times 3r=\pi r^{2}h\times 3r+2\pi
Whakareatia ngā taha e rua o te whārite ki te 3r.
V\times 3r=\pi r^{3}h\times 3+2\pi
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 2 me te 1 kia riro ai te 3.
\pi r^{3}h\times 3+2\pi =V\times 3r
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\pi r^{3}h\times 3=V\times 3r-2\pi
Tangohia te 2\pi mai i ngā taha e rua.
3\pi r^{3}h=3Vr-2\pi
He hanga arowhānui tō te whārite.
\frac{3\pi r^{3}h}{3\pi r^{3}}=\frac{3Vr-2\pi }{3\pi r^{3}}
Whakawehea ngā taha e rua ki te 3\pi r^{3}.
h=\frac{3Vr-2\pi }{3\pi r^{3}}
Mā te whakawehe ki te 3\pi r^{3} ka wetekia te whakareanga ki te 3\pi r^{3}.
h=\frac{V}{\pi r^{2}}-\frac{2}{3r^{3}}
Whakawehe 3Vr-2\pi ki te 3\pi r^{3}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}