Tauwehe
\left(1-x\right)\left(x-14\right)
Aromātai
\left(1-x\right)\left(x-14\right)
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=15 ab=-\left(-14\right)=14
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei -x^{2}+ax+bx-14. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,14 2,7
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 14.
1+14=15 2+7=9
Tātaihia te tapeke mō ia takirua.
a=14 b=1
Ko te otinga te takirua ka hoatu i te tapeke 15.
\left(-x^{2}+14x\right)+\left(x-14\right)
Tuhia anō te -x^{2}+15x-14 hei \left(-x^{2}+14x\right)+\left(x-14\right).
-x\left(x-14\right)+x-14
Whakatauwehea atu -x i te -x^{2}+14x.
\left(x-14\right)\left(-x+1\right)
Whakatauwehea atu te kīanga pātahi x-14 mā te whakamahi i te āhuatanga tātai tohatoha.
-x^{2}+15x-14=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-15±\sqrt{15^{2}-4\left(-1\right)\left(-14\right)}}{2\left(-1\right)}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-15±\sqrt{225-4\left(-1\right)\left(-14\right)}}{2\left(-1\right)}
Pūrua 15.
x=\frac{-15±\sqrt{225+4\left(-14\right)}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-15±\sqrt{225-56}}{2\left(-1\right)}
Whakareatia 4 ki te -14.
x=\frac{-15±\sqrt{169}}{2\left(-1\right)}
Tāpiri 225 ki te -56.
x=\frac{-15±13}{2\left(-1\right)}
Tuhia te pūtakerua o te 169.
x=\frac{-15±13}{-2}
Whakareatia 2 ki te -1.
x=-\frac{2}{-2}
Nā, me whakaoti te whārite x=\frac{-15±13}{-2} ina he tāpiri te ±. Tāpiri -15 ki te 13.
x=1
Whakawehe -2 ki te -2.
x=-\frac{28}{-2}
Nā, me whakaoti te whārite x=\frac{-15±13}{-2} ina he tango te ±. Tango 13 mai i -15.
x=14
Whakawehe -28 ki te -2.
-x^{2}+15x-14=-\left(x-1\right)\left(x-14\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 1 mō te x_{1} me te 14 mō te x_{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}