Whakaoti mō L
L=245\times \left(\frac{T}{\pi }\right)^{2}
T\geq 0
Whakaoti mō T
T=\frac{\pi \sqrt{5L}}{35}
L\geq 0
Tohaina
Kua tāruatia ki te papatopenga
2\pi \sqrt{\frac{L}{980}}=T
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\frac{2\pi \sqrt{\frac{1}{980}L}}{2\pi }=\frac{T}{2\pi }
Whakawehea ngā taha e rua ki te 2\pi .
\sqrt{\frac{1}{980}L}=\frac{T}{2\pi }
Mā te whakawehe ki te 2\pi ka wetekia te whakareanga ki te 2\pi .
\frac{1}{980}L=\frac{T^{2}}{4\pi ^{2}}
Pūruatia ngā taha e rua o te whārite.
\frac{\frac{1}{980}L}{\frac{1}{980}}=\frac{T^{2}}{\frac{1}{980}\times 4\pi ^{2}}
Me whakarea ngā taha e rua ki te 980.
L=\frac{T^{2}}{\frac{1}{980}\times 4\pi ^{2}}
Mā te whakawehe ki te \frac{1}{980} ka wetekia te whakareanga ki te \frac{1}{980}.
L=\frac{245T^{2}}{\pi ^{2}}
Whakawehe \frac{T^{2}}{4\pi ^{2}} ki te \frac{1}{980} mā te whakarea \frac{T^{2}}{4\pi ^{2}} ki te tau huripoki o \frac{1}{980}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}