Whakaoti mō T
T = \frac{25622300}{8001} = 3202\frac{3098}{8001} \approx 3202.3872016
Tautapa T
T≔\frac{25622300}{8001}
Tohaina
Kua tāruatia ki te papatopenga
T=300+\frac{\frac{6}{0.42672}-1}{0.0045}
Whakareatia te 0.84 ki te 0.508, ka 0.42672.
T=300+\frac{\frac{600000}{42672}-1}{0.0045}
Whakarohaina te \frac{6}{0.42672} mā te whakarea i te taurunga me te tauraro ki te 100000.
T=300+\frac{\frac{12500}{889}-1}{0.0045}
Whakahekea te hautanga \frac{600000}{42672} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 48.
T=300+\frac{\frac{12500}{889}-\frac{889}{889}}{0.0045}
Me tahuri te 1 ki te hautau \frac{889}{889}.
T=300+\frac{\frac{12500-889}{889}}{0.0045}
Tā te mea he rite te tauraro o \frac{12500}{889} me \frac{889}{889}, me tango rāua mā te tango i ō raua taurunga.
T=300+\frac{\frac{11611}{889}}{0.0045}
Tangohia te 889 i te 12500, ka 11611.
T=300+\frac{11611}{889\times 0.0045}
Tuhia te \frac{\frac{11611}{889}}{0.0045} hei hautanga kotahi.
T=300+\frac{11611}{4.0005}
Whakareatia te 889 ki te 0.0045, ka 4.0005.
T=300+\frac{116110000}{40005}
Whakarohaina te \frac{11611}{4.0005} mā te whakarea i te taurunga me te tauraro ki te 10000.
T=300+\frac{23222000}{8001}
Whakahekea te hautanga \frac{116110000}{40005} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
T=\frac{2400300}{8001}+\frac{23222000}{8001}
Me tahuri te 300 ki te hautau \frac{2400300}{8001}.
T=\frac{2400300+23222000}{8001}
Tā te mea he rite te tauraro o \frac{2400300}{8001} me \frac{23222000}{8001}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
T=\frac{25622300}{8001}
Tāpirihia te 2400300 ki te 23222000, ka 25622300.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}