Whakaoti mō S
S=\frac{56133}{20000n}
n\neq 0
Whakaoti mō n
n=\frac{56133}{20000S}
S\neq 0
Tohaina
Kua tāruatia ki te papatopenga
2Sn=\left(3+2.67\right)\times 0.99
Whakareatia ngā taha e rua o te whārite ki te 2.
2Sn=5.67\times 0.99
Tāpirihia te 3 ki te 2.67, ka 5.67.
2Sn=5.6133
Whakareatia te 5.67 ki te 0.99, ka 5.6133.
2nS=5.6133
He hanga arowhānui tō te whārite.
\frac{2nS}{2n}=\frac{5.6133}{2n}
Whakawehea ngā taha e rua ki te 2n.
S=\frac{5.6133}{2n}
Mā te whakawehe ki te 2n ka wetekia te whakareanga ki te 2n.
S=\frac{56133}{20000n}
Whakawehe 5.6133 ki te 2n.
2Sn=\left(3+2.67\right)\times 0.99
Whakareatia ngā taha e rua o te whārite ki te 2.
2Sn=5.67\times 0.99
Tāpirihia te 3 ki te 2.67, ka 5.67.
2Sn=5.6133
Whakareatia te 5.67 ki te 0.99, ka 5.6133.
\frac{2Sn}{2S}=\frac{5.6133}{2S}
Whakawehea ngā taha e rua ki te 2S.
n=\frac{5.6133}{2S}
Mā te whakawehe ki te 2S ka wetekia te whakareanga ki te 2S.
n=\frac{56133}{20000S}
Whakawehe 5.6133 ki te 2S.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}