Whakaoti mō S (complex solution)
\left\{\begin{matrix}S=\frac{40x_{1}\left(21x_{1}+y+245\right)}{d_{1}}\text{, }&d_{1}\neq 0\\S\in \mathrm{C}\text{, }&\left(x_{1}=0\text{ or }x_{1}=-\frac{y}{21}-\frac{35}{3}\right)\text{ and }d_{1}=0\end{matrix}\right.
Whakaoti mō d_1 (complex solution)
\left\{\begin{matrix}d_{1}=\frac{40x_{1}\left(21x_{1}+y+245\right)}{S}\text{, }&S\neq 0\\d_{1}\in \mathrm{C}\text{, }&\left(x_{1}=0\text{ or }x_{1}=-\frac{y}{21}-\frac{35}{3}\right)\text{ and }S=0\end{matrix}\right.
Whakaoti mō S
\left\{\begin{matrix}S=\frac{40x_{1}\left(21x_{1}+y+245\right)}{d_{1}}\text{, }&d_{1}\neq 0\\S\in \mathrm{R}\text{, }&\left(x_{1}=0\text{ or }x_{1}=-\frac{y}{21}-\frac{35}{3}\right)\text{ and }d_{1}=0\end{matrix}\right.
Whakaoti mō d_1
\left\{\begin{matrix}d_{1}=\frac{40x_{1}\left(21x_{1}+y+245\right)}{S}\text{, }&S\neq 0\\d_{1}\in \mathrm{R}\text{, }&\left(x_{1}=0\text{ or }x_{1}=-\frac{y}{21}-\frac{35}{3}\right)\text{ and }S=0\end{matrix}\right.
Graph
Tohaina
Kua tāruatia ki te papatopenga
Sd_{1}=40x_{1}y+40x_{1}\times 5+35x_{1}^{2}\times 4\times 6+50x_{1}\times 2\times 96
Whakareatia te x_{1} ki te x_{1}, ka x_{1}^{2}.
Sd_{1}=40x_{1}y+200x_{1}+35x_{1}^{2}\times 4\times 6+50x_{1}\times 2\times 96
Whakareatia te 40 ki te 5, ka 200.
Sd_{1}=40x_{1}y+200x_{1}+140x_{1}^{2}\times 6+50x_{1}\times 2\times 96
Whakareatia te 35 ki te 4, ka 140.
Sd_{1}=40x_{1}y+200x_{1}+840x_{1}^{2}+50x_{1}\times 2\times 96
Whakareatia te 140 ki te 6, ka 840.
Sd_{1}=40x_{1}y+200x_{1}+840x_{1}^{2}+100x_{1}\times 96
Whakareatia te 50 ki te 2, ka 100.
Sd_{1}=40x_{1}y+200x_{1}+840x_{1}^{2}+9600x_{1}
Whakareatia te 100 ki te 96, ka 9600.
Sd_{1}=40x_{1}y+9800x_{1}+840x_{1}^{2}
Pahekotia te 200x_{1} me 9600x_{1}, ka 9800x_{1}.
d_{1}S=840x_{1}^{2}+40x_{1}y+9800x_{1}
He hanga arowhānui tō te whārite.
\frac{d_{1}S}{d_{1}}=\frac{40x_{1}\left(21x_{1}+y+245\right)}{d_{1}}
Whakawehea ngā taha e rua ki te d_{1}.
S=\frac{40x_{1}\left(21x_{1}+y+245\right)}{d_{1}}
Mā te whakawehe ki te d_{1} ka wetekia te whakareanga ki te d_{1}.
Sd_{1}=40x_{1}y+40x_{1}\times 5+35x_{1}^{2}\times 4\times 6+50x_{1}\times 2\times 96
Whakareatia te x_{1} ki te x_{1}, ka x_{1}^{2}.
Sd_{1}=40x_{1}y+200x_{1}+35x_{1}^{2}\times 4\times 6+50x_{1}\times 2\times 96
Whakareatia te 40 ki te 5, ka 200.
Sd_{1}=40x_{1}y+200x_{1}+140x_{1}^{2}\times 6+50x_{1}\times 2\times 96
Whakareatia te 35 ki te 4, ka 140.
Sd_{1}=40x_{1}y+200x_{1}+840x_{1}^{2}+50x_{1}\times 2\times 96
Whakareatia te 140 ki te 6, ka 840.
Sd_{1}=40x_{1}y+200x_{1}+840x_{1}^{2}+100x_{1}\times 96
Whakareatia te 50 ki te 2, ka 100.
Sd_{1}=40x_{1}y+200x_{1}+840x_{1}^{2}+9600x_{1}
Whakareatia te 100 ki te 96, ka 9600.
Sd_{1}=40x_{1}y+9800x_{1}+840x_{1}^{2}
Pahekotia te 200x_{1} me 9600x_{1}, ka 9800x_{1}.
Sd_{1}=840x_{1}^{2}+40x_{1}y+9800x_{1}
He hanga arowhānui tō te whārite.
\frac{Sd_{1}}{S}=\frac{40x_{1}\left(21x_{1}+y+245\right)}{S}
Whakawehea ngā taha e rua ki te S.
d_{1}=\frac{40x_{1}\left(21x_{1}+y+245\right)}{S}
Mā te whakawehe ki te S ka wetekia te whakareanga ki te S.
Sd_{1}=40x_{1}y+40x_{1}\times 5+35x_{1}^{2}\times 4\times 6+50x_{1}\times 2\times 96
Whakareatia te x_{1} ki te x_{1}, ka x_{1}^{2}.
Sd_{1}=40x_{1}y+200x_{1}+35x_{1}^{2}\times 4\times 6+50x_{1}\times 2\times 96
Whakareatia te 40 ki te 5, ka 200.
Sd_{1}=40x_{1}y+200x_{1}+140x_{1}^{2}\times 6+50x_{1}\times 2\times 96
Whakareatia te 35 ki te 4, ka 140.
Sd_{1}=40x_{1}y+200x_{1}+840x_{1}^{2}+50x_{1}\times 2\times 96
Whakareatia te 140 ki te 6, ka 840.
Sd_{1}=40x_{1}y+200x_{1}+840x_{1}^{2}+100x_{1}\times 96
Whakareatia te 50 ki te 2, ka 100.
Sd_{1}=40x_{1}y+200x_{1}+840x_{1}^{2}+9600x_{1}
Whakareatia te 100 ki te 96, ka 9600.
Sd_{1}=40x_{1}y+9800x_{1}+840x_{1}^{2}
Pahekotia te 200x_{1} me 9600x_{1}, ka 9800x_{1}.
d_{1}S=840x_{1}^{2}+40x_{1}y+9800x_{1}
He hanga arowhānui tō te whārite.
\frac{d_{1}S}{d_{1}}=\frac{40x_{1}\left(21x_{1}+y+245\right)}{d_{1}}
Whakawehea ngā taha e rua ki te d_{1}.
S=\frac{40x_{1}\left(21x_{1}+y+245\right)}{d_{1}}
Mā te whakawehe ki te d_{1} ka wetekia te whakareanga ki te d_{1}.
Sd_{1}=40x_{1}y+40x_{1}\times 5+35x_{1}^{2}\times 4\times 6+50x_{1}\times 2\times 96
Whakareatia te x_{1} ki te x_{1}, ka x_{1}^{2}.
Sd_{1}=40x_{1}y+200x_{1}+35x_{1}^{2}\times 4\times 6+50x_{1}\times 2\times 96
Whakareatia te 40 ki te 5, ka 200.
Sd_{1}=40x_{1}y+200x_{1}+140x_{1}^{2}\times 6+50x_{1}\times 2\times 96
Whakareatia te 35 ki te 4, ka 140.
Sd_{1}=40x_{1}y+200x_{1}+840x_{1}^{2}+50x_{1}\times 2\times 96
Whakareatia te 140 ki te 6, ka 840.
Sd_{1}=40x_{1}y+200x_{1}+840x_{1}^{2}+100x_{1}\times 96
Whakareatia te 50 ki te 2, ka 100.
Sd_{1}=40x_{1}y+200x_{1}+840x_{1}^{2}+9600x_{1}
Whakareatia te 100 ki te 96, ka 9600.
Sd_{1}=40x_{1}y+9800x_{1}+840x_{1}^{2}
Pahekotia te 200x_{1} me 9600x_{1}, ka 9800x_{1}.
Sd_{1}=840x_{1}^{2}+40x_{1}y+9800x_{1}
He hanga arowhānui tō te whārite.
\frac{Sd_{1}}{S}=\frac{40x_{1}\left(21x_{1}+y+245\right)}{S}
Whakawehea ngā taha e rua ki te S.
d_{1}=\frac{40x_{1}\left(21x_{1}+y+245\right)}{S}
Mā te whakawehe ki te S ka wetekia te whakareanga ki te S.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}