Whakaoti mō S_n
S_{n}=\frac{n\left(5n+9\right)}{2}
Whakaoti mō n
n=\frac{\sqrt{40S_{n}+81}-9}{10}
n=\frac{-\sqrt{40S_{n}+81}-9}{10}\text{, }S_{n}\geq -\frac{81}{40}
Tohaina
Kua tāruatia ki te papatopenga
S_{n}=\frac{n\left(5n+9\right)}{2}
Tuhia te \frac{n}{2}\left(5n+9\right) hei hautanga kotahi.
S_{n}=\frac{5n^{2}+9n}{2}
Whakamahia te āhuatanga tohatoha hei whakarea te n ki te 5n+9.
S_{n}=\frac{5}{2}n^{2}+\frac{9}{2}n
Whakawehea ia wā o 5n^{2}+9n ki te 2, kia riro ko \frac{5}{2}n^{2}+\frac{9}{2}n.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}