Whakaoti mō P
P=\left(\frac{1}{2}-\frac{1}{2}i\right)S
Whakaoti mō S
S=\left(1+i\right)P
Pātaitai
Complex Number
5 raruraru e ōrite ana ki:
S = P ( 1 + i ) . \text { siendo } P = 345 ; i = 0012
Tohaina
Kua tāruatia ki te papatopenga
P\left(1+i\right)=S
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\left(1+i\right)P=S
He hanga arowhānui tō te whārite.
\frac{\left(1+i\right)P}{1+i}=\frac{S}{1+i}
Whakawehea ngā taha e rua ki te 1+i.
P=\frac{S}{1+i}
Mā te whakawehe ki te 1+i ka wetekia te whakareanga ki te 1+i.
P=\left(\frac{1}{2}-\frac{1}{2}i\right)S
Whakawehe S ki te 1+i.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}