Tīpoka ki ngā ihirangi matua
Whakaoti mō N
Tick mark Image
Whakaoti mō S
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

S=\frac{38000N}{76\times \frac{N}{m^{3}}}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 1 me te 2 kia riro ai te 3.
S=\frac{38000N}{\frac{76N}{m^{3}}}
Tuhia te 76\times \frac{N}{m^{3}} hei hautanga kotahi.
S=\frac{38000Nm^{3}}{76N}
Whakawehe 38000N ki te \frac{76N}{m^{3}} mā te whakarea 38000N ki te tau huripoki o \frac{76N}{m^{3}}.
S=\frac{500Nm^{3}}{N}
Me whakakore tahi te 76 i te taurunga me te tauraro.
\frac{500Nm^{3}}{N}=S
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
500Nm^{3}=SN
Tē taea kia ōrite te tāupe N ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te N.
500Nm^{3}-SN=0
Tangohia te SN mai i ngā taha e rua.
\left(500m^{3}-S\right)N=0
Pahekotia ngā kīanga tau katoa e whai ana i te N.
N=0
Whakawehe 0 ki te 500m^{3}-S.
N\in \emptyset
Tē taea kia ōrite te tāupe N ki 0.
S=\frac{38000N}{76\times \frac{N}{m^{3}}}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 1 me te 2 kia riro ai te 3.
S=\frac{38000N}{\frac{76N}{m^{3}}}
Tuhia te 76\times \frac{N}{m^{3}} hei hautanga kotahi.
S=\frac{38000Nm^{3}}{76N}
Whakawehe 38000N ki te \frac{76N}{m^{3}} mā te whakarea 38000N ki te tau huripoki o \frac{76N}{m^{3}}.
S=500m^{3}
Me whakakore tahi te 76N i te taurunga me te tauraro.