Whakaoti mō N
N\neq 0
S=500m^{3}\text{ and }m\neq 0\text{ and }N\neq 0
Whakaoti mō S
S=500m^{3}
N\neq 0\text{ and }m\neq 0
Pātaitai
Linear Equation
5 raruraru e ōrite ana ki:
S = \frac { 38000 N } { 76 \frac { N } { m m ^ { 2 } } }
Tohaina
Kua tāruatia ki te papatopenga
S=\frac{38000N}{76\times \frac{N}{m^{3}}}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 1 me te 2 kia riro ai te 3.
S=\frac{38000N}{\frac{76N}{m^{3}}}
Tuhia te 76\times \frac{N}{m^{3}} hei hautanga kotahi.
S=\frac{38000Nm^{3}}{76N}
Whakawehe 38000N ki te \frac{76N}{m^{3}} mā te whakarea 38000N ki te tau huripoki o \frac{76N}{m^{3}}.
S=\frac{500Nm^{3}}{N}
Me whakakore tahi te 76 i te taurunga me te tauraro.
\frac{500Nm^{3}}{N}=S
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
500Nm^{3}=SN
Tē taea kia ōrite te tāupe N ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te N.
500Nm^{3}-SN=0
Tangohia te SN mai i ngā taha e rua.
\left(500m^{3}-S\right)N=0
Pahekotia ngā kīanga tau katoa e whai ana i te N.
N=0
Whakawehe 0 ki te 500m^{3}-S.
N\in \emptyset
Tē taea kia ōrite te tāupe N ki 0.
S=\frac{38000N}{76\times \frac{N}{m^{3}}}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 1 me te 2 kia riro ai te 3.
S=\frac{38000N}{\frac{76N}{m^{3}}}
Tuhia te 76\times \frac{N}{m^{3}} hei hautanga kotahi.
S=\frac{38000Nm^{3}}{76N}
Whakawehe 38000N ki te \frac{76N}{m^{3}} mā te whakarea 38000N ki te tau huripoki o \frac{76N}{m^{3}}.
S=500m^{3}
Me whakakore tahi te 76N i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}