Whakaoti mō S
S=\frac{5}{21}\approx 0.238095238
Tautapa S
S≔\frac{5}{21}
Tohaina
Kua tāruatia ki te papatopenga
S=\frac{2}{18}+\frac{1}{18}+\frac{1}{30}+\frac{1}{45}+\frac{1}{63}
Ko te maha noa iti rawa atu o 9 me 18 ko 18. Me tahuri \frac{1}{9} me \frac{1}{18} ki te hautau me te tautūnga 18.
S=\frac{2+1}{18}+\frac{1}{30}+\frac{1}{45}+\frac{1}{63}
Tā te mea he rite te tauraro o \frac{2}{18} me \frac{1}{18}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
S=\frac{3}{18}+\frac{1}{30}+\frac{1}{45}+\frac{1}{63}
Tāpirihia te 2 ki te 1, ka 3.
S=\frac{1}{6}+\frac{1}{30}+\frac{1}{45}+\frac{1}{63}
Whakahekea te hautanga \frac{3}{18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
S=\frac{5}{30}+\frac{1}{30}+\frac{1}{45}+\frac{1}{63}
Ko te maha noa iti rawa atu o 6 me 30 ko 30. Me tahuri \frac{1}{6} me \frac{1}{30} ki te hautau me te tautūnga 30.
S=\frac{5+1}{30}+\frac{1}{45}+\frac{1}{63}
Tā te mea he rite te tauraro o \frac{5}{30} me \frac{1}{30}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
S=\frac{6}{30}+\frac{1}{45}+\frac{1}{63}
Tāpirihia te 5 ki te 1, ka 6.
S=\frac{1}{5}+\frac{1}{45}+\frac{1}{63}
Whakahekea te hautanga \frac{6}{30} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
S=\frac{9}{45}+\frac{1}{45}+\frac{1}{63}
Ko te maha noa iti rawa atu o 5 me 45 ko 45. Me tahuri \frac{1}{5} me \frac{1}{45} ki te hautau me te tautūnga 45.
S=\frac{9+1}{45}+\frac{1}{63}
Tā te mea he rite te tauraro o \frac{9}{45} me \frac{1}{45}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
S=\frac{10}{45}+\frac{1}{63}
Tāpirihia te 9 ki te 1, ka 10.
S=\frac{2}{9}+\frac{1}{63}
Whakahekea te hautanga \frac{10}{45} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
S=\frac{14}{63}+\frac{1}{63}
Ko te maha noa iti rawa atu o 9 me 63 ko 63. Me tahuri \frac{2}{9} me \frac{1}{63} ki te hautau me te tautūnga 63.
S=\frac{14+1}{63}
Tā te mea he rite te tauraro o \frac{14}{63} me \frac{1}{63}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
S=\frac{15}{63}
Tāpirihia te 14 ki te 1, ka 15.
S=\frac{5}{21}
Whakahekea te hautanga \frac{15}{63} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}