Whakaoti mō E
\left\{\begin{matrix}E=r+\frac{R}{n}\text{, }&n\neq 0\\E\in \mathrm{R}\text{, }&R=0\text{ and }n=0\end{matrix}\right.
Whakaoti mō R
R=n\left(E-r\right)
Pātaitai
Linear Equation
R = n E - n r
Tohaina
Kua tāruatia ki te papatopenga
nE-nr=R
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
nE=R+nr
Me tāpiri te nr ki ngā taha e rua.
nE=nr+R
He hanga arowhānui tō te whārite.
\frac{nE}{n}=\frac{nr+R}{n}
Whakawehea ngā taha e rua ki te n.
E=\frac{nr+R}{n}
Mā te whakawehe ki te n ka wetekia te whakareanga ki te n.
E=r+\frac{R}{n}
Whakawehe R+rn ki te n.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}