Whakaoti mō G
G=\frac{-15N+16P_{A}-6P_{B}+Q_{1}-600}{15}
Whakaoti mō M
M\in \mathrm{R}
Q_{1}=15G+15N-16P_{A}+6P_{B}+600
Tohaina
Kua tāruatia ki te papatopenga
Q_{1}=600-4P_{A}-0\times 3M-12P_{A}+15G+6P_{B}+15N
Whakareatia te 0 ki te 0, ka 0.
Q_{1}=600-4P_{A}-0M-12P_{A}+15G+6P_{B}+15N
Whakareatia te 0 ki te 3, ka 0.
Q_{1}=600-4P_{A}-0-12P_{A}+15G+6P_{B}+15N
Ko te tau i whakarea ki te kore ka hua ko te kore.
600-4P_{A}-0-12P_{A}+15G+6P_{B}+15N=Q_{1}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-12P_{A}+15G+6P_{B}+15N=Q_{1}-\left(600-4P_{A}-0\right)
Tangohia te 600-4P_{A}-0 mai i ngā taha e rua.
15G+6P_{B}+15N=Q_{1}-\left(600-4P_{A}-0\right)+12P_{A}
Me tāpiri te 12P_{A} ki ngā taha e rua.
15G+15N=Q_{1}-\left(600-4P_{A}-0\right)+12P_{A}-6P_{B}
Tangohia te 6P_{B} mai i ngā taha e rua.
15G=Q_{1}-\left(600-4P_{A}-0\right)+12P_{A}-6P_{B}-15N
Tangohia te 15N mai i ngā taha e rua.
15G=Q_{1}-\left(-4P_{A}+600\right)-15N-6P_{B}+12P_{A}
Whakaraupapatia anō ngā kīanga tau.
15G=Q_{1}+4P_{A}-600-15N-6P_{B}+12P_{A}
Hei kimi i te tauaro o -4P_{A}+600, kimihia te tauaro o ia taurangi.
15G=Q_{1}+16P_{A}-600-15N-6P_{B}
Pahekotia te 4P_{A} me 12P_{A}, ka 16P_{A}.
15G=-15N+16P_{A}-6P_{B}+Q_{1}-600
He hanga arowhānui tō te whārite.
\frac{15G}{15}=\frac{-15N+16P_{A}-6P_{B}+Q_{1}-600}{15}
Whakawehea ngā taha e rua ki te 15.
G=\frac{-15N+16P_{A}-6P_{B}+Q_{1}-600}{15}
Mā te whakawehe ki te 15 ka wetekia te whakareanga ki te 15.
G=\frac{Q_{1}}{15}+\frac{16P_{A}}{15}-\frac{2P_{B}}{5}-N-40
Whakawehe Q_{1}+16P_{A}-600-15N-6P_{B} ki te 15.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}