Whakaoti mō G
G=\frac{M}{500}+\frac{Q_{1}}{15}+\frac{16P_{A}}{15}-\frac{N}{10}-\frac{2P_{B}}{5}-40
Whakaoti mō M
M=-\frac{100Q_{1}}{3}-\frac{1600P_{A}}{3}+50N+200P_{B}+500G+20000
Tohaina
Kua tāruatia ki te papatopenga
Q_{1}=600-16P_{A}-0.03M+15G+6P_{B}+1.5N
Pahekotia te -4P_{A} me -12P_{A}, ka -16P_{A}.
600-16P_{A}-0.03M+15G+6P_{B}+1.5N=Q_{1}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-16P_{A}-0.03M+15G+6P_{B}+1.5N=Q_{1}-600
Tangohia te 600 mai i ngā taha e rua.
-0.03M+15G+6P_{B}+1.5N=Q_{1}-600+16P_{A}
Me tāpiri te 16P_{A} ki ngā taha e rua.
15G+6P_{B}+1.5N=Q_{1}-600+16P_{A}+0.03M
Me tāpiri te 0.03M ki ngā taha e rua.
15G+1.5N=Q_{1}-600+16P_{A}+0.03M-6P_{B}
Tangohia te 6P_{B} mai i ngā taha e rua.
15G=Q_{1}-600+16P_{A}+0.03M-6P_{B}-1.5N
Tangohia te 1.5N mai i ngā taha e rua.
15G=\frac{3M}{100}-\frac{3N}{2}+Q_{1}+16P_{A}-6P_{B}-600
He hanga arowhānui tō te whārite.
\frac{15G}{15}=\frac{\frac{3M}{100}-\frac{3N}{2}+Q_{1}+16P_{A}-6P_{B}-600}{15}
Whakawehea ngā taha e rua ki te 15.
G=\frac{\frac{3M}{100}-\frac{3N}{2}+Q_{1}+16P_{A}-6P_{B}-600}{15}
Mā te whakawehe ki te 15 ka wetekia te whakareanga ki te 15.
G=\frac{M}{500}+\frac{Q_{1}}{15}+\frac{16P_{A}}{15}-\frac{N}{10}-\frac{2P_{B}}{5}-40
Whakawehe Q_{1}-600+16P_{A}+\frac{3M}{100}-6P_{B}-\frac{3N}{2} ki te 15.
Q_{1}=600-16P_{A}-0.03M+15G+6P_{B}+1.5N
Pahekotia te -4P_{A} me -12P_{A}, ka -16P_{A}.
600-16P_{A}-0.03M+15G+6P_{B}+1.5N=Q_{1}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-16P_{A}-0.03M+15G+6P_{B}+1.5N=Q_{1}-600
Tangohia te 600 mai i ngā taha e rua.
-0.03M+15G+6P_{B}+1.5N=Q_{1}-600+16P_{A}
Me tāpiri te 16P_{A} ki ngā taha e rua.
-0.03M+6P_{B}+1.5N=Q_{1}-600+16P_{A}-15G
Tangohia te 15G mai i ngā taha e rua.
-0.03M+1.5N=Q_{1}-600+16P_{A}-15G-6P_{B}
Tangohia te 6P_{B} mai i ngā taha e rua.
-0.03M=Q_{1}-600+16P_{A}-15G-6P_{B}-1.5N
Tangohia te 1.5N mai i ngā taha e rua.
-0.03M=-\frac{3N}{2}+Q_{1}+16P_{A}-6P_{B}-15G-600
He hanga arowhānui tō te whārite.
\frac{-0.03M}{-0.03}=\frac{-\frac{3N}{2}+Q_{1}+16P_{A}-6P_{B}-15G-600}{-0.03}
Whakawehea ngā taha e rua o te whārite ki te -0.03, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
M=\frac{-\frac{3N}{2}+Q_{1}+16P_{A}-6P_{B}-15G-600}{-0.03}
Mā te whakawehe ki te -0.03 ka wetekia te whakareanga ki te -0.03.
M=-\frac{100Q_{1}}{3}-\frac{1600P_{A}}{3}+50N+200P_{B}+500G+20000
Whakawehe Q_{1}-600+16P_{A}-15G-6P_{B}-\frac{3N}{2} ki te -0.03 mā te whakarea Q_{1}-600+16P_{A}-15G-6P_{B}-\frac{3N}{2} ki te tau huripoki o -0.03.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}