Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=-5 ab=2\left(-3\right)=-6
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 2x^{2}+ax+bx-3. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-6 2,-3
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -6.
1-6=-5 2-3=-1
Tātaihia te tapeke mō ia takirua.
a=-6 b=1
Ko te otinga te takirua ka hoatu i te tapeke -5.
\left(2x^{2}-6x\right)+\left(x-3\right)
Tuhia anō te 2x^{2}-5x-3 hei \left(2x^{2}-6x\right)+\left(x-3\right).
2x\left(x-3\right)+x-3
Whakatauwehea atu 2x i te 2x^{2}-6x.
\left(x-3\right)\left(2x+1\right)
Whakatauwehea atu te kīanga pātahi x-3 mā te whakamahi i te āhuatanga tātai tohatoha.
2x^{2}-5x-3=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 2\left(-3\right)}}{2\times 2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 2\left(-3\right)}}{2\times 2}
Pūrua -5.
x=\frac{-\left(-5\right)±\sqrt{25-8\left(-3\right)}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-\left(-5\right)±\sqrt{25+24}}{2\times 2}
Whakareatia -8 ki te -3.
x=\frac{-\left(-5\right)±\sqrt{49}}{2\times 2}
Tāpiri 25 ki te 24.
x=\frac{-\left(-5\right)±7}{2\times 2}
Tuhia te pūtakerua o te 49.
x=\frac{5±7}{2\times 2}
Ko te tauaro o -5 ko 5.
x=\frac{5±7}{4}
Whakareatia 2 ki te 2.
x=\frac{12}{4}
Nā, me whakaoti te whārite x=\frac{5±7}{4} ina he tāpiri te ±. Tāpiri 5 ki te 7.
x=3
Whakawehe 12 ki te 4.
x=-\frac{2}{4}
Nā, me whakaoti te whārite x=\frac{5±7}{4} ina he tango te ±. Tango 7 mai i 5.
x=-\frac{1}{2}
Whakahekea te hautanga \frac{-2}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
2x^{2}-5x-3=2\left(x-3\right)\left(x-\left(-\frac{1}{2}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 3 mō te x_{1} me te -\frac{1}{2} mō te x_{2}.
2x^{2}-5x-3=2\left(x-3\right)\left(x+\frac{1}{2}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
2x^{2}-5x-3=2\left(x-3\right)\times \frac{2x+1}{2}
Tāpiri \frac{1}{2} ki te x mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
2x^{2}-5x-3=\left(x-3\right)\left(2x+1\right)
Whakakorea atu te tauwehe pūnoa nui rawa 2 i roto i te 2 me te 2.