Whakaoti mō n
n=4Q-1
Whakaoti mō Q
Q=\frac{n+1}{4}
Tohaina
Kua tāruatia ki te papatopenga
Q=\frac{1}{4}n+\frac{1}{4}
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{4} ki te n+1.
\frac{1}{4}n+\frac{1}{4}=Q
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\frac{1}{4}n=Q-\frac{1}{4}
Tangohia te \frac{1}{4} mai i ngā taha e rua.
\frac{\frac{1}{4}n}{\frac{1}{4}}=\frac{Q-\frac{1}{4}}{\frac{1}{4}}
Me whakarea ngā taha e rua ki te 4.
n=\frac{Q-\frac{1}{4}}{\frac{1}{4}}
Mā te whakawehe ki te \frac{1}{4} ka wetekia te whakareanga ki te \frac{1}{4}.
n=4Q-1
Whakawehe Q-\frac{1}{4} ki te \frac{1}{4} mā te whakarea Q-\frac{1}{4} ki te tau huripoki o \frac{1}{4}.
Q=\frac{1}{4}n+\frac{1}{4}
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{4} ki te n+1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}