Whakaoti mō P
P=-\frac{x}{10}+60-\frac{500}{x}
x\neq 0
Whakaoti mō x (complex solution)
x=5\sqrt{P^{2}-120P+3400}-5P+300
x=-5\sqrt{P^{2}-120P+3400}-5P+300
Whakaoti mō x
x=5\sqrt{P^{2}-120P+3400}-5P+300
x=-5\sqrt{P^{2}-120P+3400}-5P+300\text{, }P\geq 10\sqrt{2}+60\text{ or }P\leq 60-10\sqrt{2}
Graph
Tohaina
Kua tāruatia ki te papatopenga
xP=80x-0.1x^{2}-500-20x
Hei kimi i te tauaro o 500+20x, kimihia te tauaro o ia taurangi.
xP=60x-0.1x^{2}-500
Pahekotia te 80x me -20x, ka 60x.
xP=-\frac{x^{2}}{10}+60x-500
He hanga arowhānui tō te whārite.
\frac{xP}{x}=\frac{-\frac{x^{2}}{10}+60x-500}{x}
Whakawehea ngā taha e rua ki te x.
P=\frac{-\frac{x^{2}}{10}+60x-500}{x}
Mā te whakawehe ki te x ka wetekia te whakareanga ki te x.
P=-\frac{x}{10}+60-\frac{500}{x}
Whakawehe 60x-\frac{x^{2}}{10}-500 ki te x.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}