Whakaoti mō Q
Q=\frac{x}{3}-\frac{1}{3}-\frac{1}{x}
x\neq 0
Whakaoti mō x
x=\frac{\sqrt{9Q^{2}+6Q+13}+3Q+1}{2}
x=\frac{-\sqrt{9Q^{2}+6Q+13}+3Q+1}{2}
Graph
Tohaina
Kua tāruatia ki te papatopenga
x-3Qx=2x+3-x^{2}
Tangohia te x^{2} mai i ngā taha e rua.
-3Qx=2x+3-x^{2}-x
Tangohia te x mai i ngā taha e rua.
-3Qx=x+3-x^{2}
Pahekotia te 2x me -x, ka x.
\left(-3x\right)Q=3+x-x^{2}
He hanga arowhānui tō te whārite.
\frac{\left(-3x\right)Q}{-3x}=\frac{3+x-x^{2}}{-3x}
Whakawehea ngā taha e rua ki te -3x.
Q=\frac{3+x-x^{2}}{-3x}
Mā te whakawehe ki te -3x ka wetekia te whakareanga ki te -3x.
Q=\frac{x}{3}-\frac{1}{3}-\frac{1}{x}
Whakawehe x+3-x^{2} ki te -3x.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}