Whakaoti mō L
L=-2x-2-\frac{3}{x}
x\neq 0
Whakaoti mō x (complex solution)
x=\frac{\sqrt{L^{2}+4L-20}}{4}-\frac{L}{4}-\frac{1}{2}
x=-\frac{\sqrt{L^{2}+4L-20}}{4}-\frac{L}{4}-\frac{1}{2}
Whakaoti mō x
x=\frac{\sqrt{L^{2}+4L-20}}{4}-\frac{L}{4}-\frac{1}{2}
x=-\frac{\sqrt{L^{2}+4L-20}}{4}-\frac{L}{4}-\frac{1}{2}\text{, }L\geq 2\sqrt{6}-2\text{ or }L\leq -2\sqrt{6}-2
Graph
Tohaina
Kua tāruatia ki te papatopenga
-5x+1Lx=x^{2}-7x-3-3x^{2}
Tangohia te 3x^{2} mai i ngā taha e rua.
-5x+1Lx=-2x^{2}-7x-3
Pahekotia te x^{2} me -3x^{2}, ka -2x^{2}.
1Lx=-2x^{2}-7x-3+5x
Me tāpiri te 5x ki ngā taha e rua.
1Lx=-2x^{2}-2x-3
Pahekotia te -7x me 5x, ka -2x.
Lx=-2x^{2}-2x-3
Whakaraupapatia anō ngā kīanga tau.
xL=-2x^{2}-2x-3
He hanga arowhānui tō te whārite.
\frac{xL}{x}=\frac{-2x^{2}-2x-3}{x}
Whakawehea ngā taha e rua ki te x.
L=\frac{-2x^{2}-2x-3}{x}
Mā te whakawehe ki te x ka wetekia te whakareanga ki te x.
L=-2x-2-\frac{3}{x}
Whakawehe -2x^{2}-2x-3 ki te x.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}