Tīpoka ki ngā ihirangi matua
Whakaoti mō P
Tick mark Image
Whakaoti mō d
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

Pt=\left(98d-14t^{\frac{1}{3}}d\right)t
Whakamahia te āhuatanga tohatoha hei whakarea te 98-14t^{\frac{1}{3}} ki te d.
Pt=98dt-14t^{\frac{1}{3}}dt
Whakamahia te āhuatanga tohatoha hei whakarea te 98d-14t^{\frac{1}{3}}d ki te t.
Pt=98dt-14t^{\frac{4}{3}}d
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te \frac{1}{3} me te 1 kia riro ai te \frac{4}{3}.
tP=98dt-14dt^{\frac{4}{3}}
He hanga arowhānui tō te whārite.
\frac{tP}{t}=\frac{14\left(-\sqrt[3]{t}+7\right)dt}{t}
Whakawehea ngā taha e rua ki te t.
P=\frac{14\left(-\sqrt[3]{t}+7\right)dt}{t}
Mā te whakawehe ki te t ka wetekia te whakareanga ki te t.
P=14\left(-\sqrt[3]{t}+7\right)d
Whakawehe 14td\left(7-\sqrt[3]{t}\right) ki te t.
Pt=\left(98d-14t^{\frac{1}{3}}d\right)t
Whakamahia te āhuatanga tohatoha hei whakarea te 98-14t^{\frac{1}{3}} ki te d.
Pt=98dt-14t^{\frac{1}{3}}dt
Whakamahia te āhuatanga tohatoha hei whakarea te 98d-14t^{\frac{1}{3}}d ki te t.
Pt=98dt-14t^{\frac{4}{3}}d
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te \frac{1}{3} me te 1 kia riro ai te \frac{4}{3}.
98dt-14t^{\frac{4}{3}}d=Pt
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\left(98t-14t^{\frac{4}{3}}\right)d=Pt
Pahekotia ngā kīanga tau katoa e whai ana i te d.
\frac{\left(98t-14t^{\frac{4}{3}}\right)d}{98t-14t^{\frac{4}{3}}}=\frac{Pt}{98t-14t^{\frac{4}{3}}}
Whakawehea ngā taha e rua ki te 98t-14t^{\frac{4}{3}}.
d=\frac{Pt}{98t-14t^{\frac{4}{3}}}
Mā te whakawehe ki te 98t-14t^{\frac{4}{3}} ka wetekia te whakareanga ki te 98t-14t^{\frac{4}{3}}.
d=\frac{P}{14\left(-\sqrt[3]{t}+7\right)}
Whakawehe Pt ki te 98t-14t^{\frac{4}{3}}.