P ( t ) = ( 98 - 14 t ^ { 1 / 3 } ) d t
Whakaoti mō P
\left\{\begin{matrix}\\P=14\left(-\sqrt[3]{t}+7\right)d\text{, }&\text{unconditionally}\\P\in \mathrm{R}\text{, }&t=0\end{matrix}\right.
Whakaoti mō d
\left\{\begin{matrix}d=\frac{P}{14\left(-\sqrt[3]{t}+7\right)}\text{, }&t\neq 343\\d\in \mathrm{R}\text{, }&t=0\text{ or }\left(P=0\text{ and }t=343\right)\end{matrix}\right.
Tohaina
Kua tāruatia ki te papatopenga
Pt=\left(98d-14t^{\frac{1}{3}}d\right)t
Whakamahia te āhuatanga tohatoha hei whakarea te 98-14t^{\frac{1}{3}} ki te d.
Pt=98dt-14t^{\frac{1}{3}}dt
Whakamahia te āhuatanga tohatoha hei whakarea te 98d-14t^{\frac{1}{3}}d ki te t.
Pt=98dt-14t^{\frac{4}{3}}d
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te \frac{1}{3} me te 1 kia riro ai te \frac{4}{3}.
tP=98dt-14dt^{\frac{4}{3}}
He hanga arowhānui tō te whārite.
\frac{tP}{t}=\frac{14\left(-\sqrt[3]{t}+7\right)dt}{t}
Whakawehea ngā taha e rua ki te t.
P=\frac{14\left(-\sqrt[3]{t}+7\right)dt}{t}
Mā te whakawehe ki te t ka wetekia te whakareanga ki te t.
P=14\left(-\sqrt[3]{t}+7\right)d
Whakawehe 14td\left(7-\sqrt[3]{t}\right) ki te t.
Pt=\left(98d-14t^{\frac{1}{3}}d\right)t
Whakamahia te āhuatanga tohatoha hei whakarea te 98-14t^{\frac{1}{3}} ki te d.
Pt=98dt-14t^{\frac{1}{3}}dt
Whakamahia te āhuatanga tohatoha hei whakarea te 98d-14t^{\frac{1}{3}}d ki te t.
Pt=98dt-14t^{\frac{4}{3}}d
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te \frac{1}{3} me te 1 kia riro ai te \frac{4}{3}.
98dt-14t^{\frac{4}{3}}d=Pt
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\left(98t-14t^{\frac{4}{3}}\right)d=Pt
Pahekotia ngā kīanga tau katoa e whai ana i te d.
\frac{\left(98t-14t^{\frac{4}{3}}\right)d}{98t-14t^{\frac{4}{3}}}=\frac{Pt}{98t-14t^{\frac{4}{3}}}
Whakawehea ngā taha e rua ki te 98t-14t^{\frac{4}{3}}.
d=\frac{Pt}{98t-14t^{\frac{4}{3}}}
Mā te whakawehe ki te 98t-14t^{\frac{4}{3}} ka wetekia te whakareanga ki te 98t-14t^{\frac{4}{3}}.
d=\frac{P}{14\left(-\sqrt[3]{t}+7\right)}
Whakawehe Pt ki te 98t-14t^{\frac{4}{3}}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}