Whakaoti mō C
\left\{\begin{matrix}C=\frac{RT-P}{Rv^{3}}\text{, }&R\neq 0\text{ and }v\neq 0\text{ and }T\neq 0\\C\in \mathrm{R}\text{, }&\left(P=0\text{ and }R=0\text{ and }T\neq 0\right)\text{ or }\left(P=RT\text{ and }v=0\text{ and }T\neq 0\text{ and }R\neq 0\right)\end{matrix}\right.
Whakaoti mō P
P=R\left(T-Cv^{3}\right)
T\neq 0
Tohaina
Kua tāruatia ki te papatopenga
PT=RT\left(1-\frac{C}{T}v^{3}\right)T
Whakareatia ngā taha e rua o te whārite ki te T.
PT=RT^{2}\left(1-\frac{C}{T}v^{3}\right)
Whakareatia te T ki te T, ka T^{2}.
PT=RT^{2}\left(1-\frac{Cv^{3}}{T}\right)
Tuhia te \frac{C}{T}v^{3} hei hautanga kotahi.
PT=RT^{2}\left(\frac{T}{T}-\frac{Cv^{3}}{T}\right)
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{T}{T}.
PT=RT^{2}\times \frac{T-Cv^{3}}{T}
Tā te mea he rite te tauraro o \frac{T}{T} me \frac{Cv^{3}}{T}, me tango rāua mā te tango i ō raua taurunga.
PT=\frac{R\left(T-Cv^{3}\right)}{T}T^{2}
Tuhia te R\times \frac{T-Cv^{3}}{T} hei hautanga kotahi.
PT=\frac{RT-RCv^{3}}{T}T^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te R ki te T-Cv^{3}.
PT=\frac{\left(RT-RCv^{3}\right)T^{2}}{T}
Tuhia te \frac{RT-RCv^{3}}{T}T^{2} hei hautanga kotahi.
PT=T\left(-CRv^{3}+RT\right)
Me whakakore tahi te T i te taurunga me te tauraro.
PT=-TCRv^{3}+RT^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te T ki te -CRv^{3}+RT.
-TCRv^{3}+RT^{2}=PT
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-TCRv^{3}=PT-RT^{2}
Tangohia te RT^{2} mai i ngā taha e rua.
-CRTv^{3}=PT-RT^{2}
Whakaraupapatia anō ngā kīanga tau.
\left(-RTv^{3}\right)C=PT-RT^{2}
He hanga arowhānui tō te whārite.
\frac{\left(-RTv^{3}\right)C}{-RTv^{3}}=\frac{T\left(P-RT\right)}{-RTv^{3}}
Whakawehea ngā taha e rua ki te -RTv^{3}.
C=\frac{T\left(P-RT\right)}{-RTv^{3}}
Mā te whakawehe ki te -RTv^{3} ka wetekia te whakareanga ki te -RTv^{3}.
C=-\frac{P-RT}{Rv^{3}}
Whakawehe T\left(P-RT\right) ki te -RTv^{3}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}