Tīpoka ki ngā ihirangi matua
Whakaoti mō C
Tick mark Image
Whakaoti mō P
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

PT=RT\left(1-\frac{C}{T}v^{3}\right)T
Whakareatia ngā taha e rua o te whārite ki te T.
PT=RT^{2}\left(1-\frac{C}{T}v^{3}\right)
Whakareatia te T ki te T, ka T^{2}.
PT=RT^{2}\left(1-\frac{Cv^{3}}{T}\right)
Tuhia te \frac{C}{T}v^{3} hei hautanga kotahi.
PT=RT^{2}\left(\frac{T}{T}-\frac{Cv^{3}}{T}\right)
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{T}{T}.
PT=RT^{2}\times \frac{T-Cv^{3}}{T}
Tā te mea he rite te tauraro o \frac{T}{T} me \frac{Cv^{3}}{T}, me tango rāua mā te tango i ō raua taurunga.
PT=\frac{R\left(T-Cv^{3}\right)}{T}T^{2}
Tuhia te R\times \frac{T-Cv^{3}}{T} hei hautanga kotahi.
PT=\frac{RT-RCv^{3}}{T}T^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te R ki te T-Cv^{3}.
PT=\frac{\left(RT-RCv^{3}\right)T^{2}}{T}
Tuhia te \frac{RT-RCv^{3}}{T}T^{2} hei hautanga kotahi.
PT=T\left(-CRv^{3}+RT\right)
Me whakakore tahi te T i te taurunga me te tauraro.
PT=-TCRv^{3}+RT^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te T ki te -CRv^{3}+RT.
-TCRv^{3}+RT^{2}=PT
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-TCRv^{3}=PT-RT^{2}
Tangohia te RT^{2} mai i ngā taha e rua.
-CRTv^{3}=PT-RT^{2}
Whakaraupapatia anō ngā kīanga tau.
\left(-RTv^{3}\right)C=PT-RT^{2}
He hanga arowhānui tō te whārite.
\frac{\left(-RTv^{3}\right)C}{-RTv^{3}}=\frac{T\left(P-RT\right)}{-RTv^{3}}
Whakawehea ngā taha e rua ki te -RTv^{3}.
C=\frac{T\left(P-RT\right)}{-RTv^{3}}
Mā te whakawehe ki te -RTv^{3} ka wetekia te whakareanga ki te -RTv^{3}.
C=-\frac{P-RT}{Rv^{3}}
Whakawehe T\left(P-RT\right) ki te -RTv^{3}.