P = 8.500 X + 40 \%
Whakaoti mō X
X=\frac{2P}{17}-\frac{4}{85}
Whakaoti mō P
P=\frac{17X}{2}+0.4
Tohaina
Kua tāruatia ki te papatopenga
P=8.5X+\frac{2}{5}
Whakahekea te hautanga \frac{40}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 20.
8.5X+\frac{2}{5}=P
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
8.5X=P-\frac{2}{5}
Tangohia te \frac{2}{5} mai i ngā taha e rua.
\frac{8.5X}{8.5}=\frac{P-\frac{2}{5}}{8.5}
Whakawehea ngā taha e rua o te whārite ki te 8.5, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
X=\frac{P-\frac{2}{5}}{8.5}
Mā te whakawehe ki te 8.5 ka wetekia te whakareanga ki te 8.5.
X=\frac{2P}{17}-\frac{4}{85}
Whakawehe P-\frac{2}{5} ki te 8.5 mā te whakarea P-\frac{2}{5} ki te tau huripoki o 8.5.
P=8.5X+\frac{2}{5}
Whakahekea te hautanga \frac{40}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 20.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}