Whakaoti mō P
P = \frac{130000000000000000000000000000000000}{27888053550934389677095526468343} = 4661\frac{1.3782399094813897 \times 10^{31}}{2.788805355093439 \times 10^{31}} \approx 4661.494204412
Tautapa P
P≔\frac{130000000000000000000000000000000000}{27888053550934389677095526468343}
Tohaina
Kua tāruatia ki te papatopenga
P=\frac{130000\times 0.07}{\left(1+\frac{0.07}{1}\right)^{1\times 16}-1}
Ka whakawehea he tau ki te tahi, hua ai ko ia anō.
P=\frac{9100}{\left(1+\frac{0.07}{1}\right)^{1\times 16}-1}
Whakareatia te 130000 ki te 0.07, ka 9100.
P=\frac{9100}{\left(1+0.07\right)^{1\times 16}-1}
Ka whakawehea he tau ki te tahi, hua ai ko ia anō.
P=\frac{9100}{1.07^{1\times 16}-1}
Tāpirihia te 1 ki te 0.07, ka 1.07.
P=\frac{9100}{1.07^{16}-1}
Whakareatia te 1 ki te 16, ka 16.
P=\frac{9100}{2.95216374856540727739668685278401-1}
Tātaihia te 1.07 mā te pū o 16, kia riro ko 2.95216374856540727739668685278401.
P=\frac{9100}{1.95216374856540727739668685278401}
Tangohia te 1 i te 2.95216374856540727739668685278401, ka 1.95216374856540727739668685278401.
P=\frac{910000000000000000000000000000000000}{195216374856540727739668685278401}
Whakarohaina te \frac{9100}{1.95216374856540727739668685278401} mā te whakarea i te taurunga me te tauraro ki te 100000000000000000000000000000000.
P=\frac{130000000000000000000000000000000000}{27888053550934389677095526468343}
Whakahekea te hautanga \frac{910000000000000000000000000000000000}{195216374856540727739668685278401} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 7.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}