Whakaoti mō P
P=121
Tautapa P
P≔121
Tohaina
Kua tāruatia ki te papatopenga
P=0\times 0\times 5\times 43^{2}-0\times 0\times 3\times 43+121
Whakareatia te 0 ki te 0, ka 0.
P=0\times 5\times 43^{2}-0\times 0\times 3\times 43+121
Whakareatia te 0 ki te 0, ka 0.
P=0\times 43^{2}-0\times 0\times 3\times 43+121
Whakareatia te 0 ki te 5, ka 0.
P=0\times 1849-0\times 0\times 3\times 43+121
Tātaihia te 43 mā te pū o 2, kia riro ko 1849.
P=0-0\times 0\times 3\times 43+121
Whakareatia te 0 ki te 1849, ka 0.
P=0-0\times 3\times 43+121
Whakareatia te 0 ki te 0, ka 0.
P=0-0\times 43+121
Whakareatia te 0 ki te 3, ka 0.
P=0-0+121
Whakareatia te 0 ki te 43, ka 0.
P=0+121
Mā te tango i te 0 i a ia ake anō ka toe ko te 0.
P=121
Tāpirihia te 0 ki te 121, ka 121.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}